

Lecture Notes in Artificial Intelligence 5260
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Carsten Ullrich

Pedagogically Founded
Courseware Generation
for Web-Based Learning

An HTN-Planning-Based Approach
Implemented in PAIGOS

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Author

Carsten Ullrich
DFKI, Deutsches Forschungszentrum für Künstliche Intelligenz
Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany
E-mail: ullrich.c@gmail.com

Library of Congress Control Number: 2008935889

CR Subject Classification (1998): I.2, H.3.5, H.5.3, K.3, H.5, I.7

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-88213-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-88213-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Markus Richter, Heidelberg
Printed on acid-free paper SPIN: 12539321 06/3180 5 4 3 2 1 0

This work is dedicated to Erica Melis
and the ActiveMath research group.

Foreword

Automatic course generation is a very important problem with numerous prac-
tical applications in e-learning. Therefore, it has been studied since the 1980ies
in the areas of intelligent tutoring, AI and education, adaptive hypermedia
and Web-based educational systems. Many approaches have been proposed,
but hardly any have resulted in generic and practically applied systems. There
are many problems that have remained unresolved, for example:

• Extracting from experts and representing pedagogical knowledge in a form
suitable to guide instructional planning

• Deciding the level of granularity and appropriate pedagogical annotation of
learning materials (objects) to allow for their reuse and retrieval; ensuring
interoperability with different repositories of learning objects

• Balancing the pedagogical advantages of planning entire courses versus
dynamically planning only the next step to ensure close adaptation to the
individual student

• Allowing different degrees of involvement of the instructor and the learner
in the planning process, rather than just “take it (the plan) or leave it”

• The limitation of having to focus on presenting single concepts imposed
by the separation of content planning from presentation planning

• Ensuring smooth transitions between the individual learning materials in
the course.

Carsten Ullrich’s work addresses all these problems and brings about a new
framework for course generation combining a variety of existing approaches,
technologies, and techniques. This framework has been implemented and eval-
uated with good results in several domains, with users from different countries
and universities in the context of an EU project. His work makes several sig-
nificant contributions to the state of the art in the area of course planning.

First, it defines an extensive list of teaching tasks, methods and scenarios,
which is a significant contribution. This knowledge has been extracted from
pedagogic experts and literature and is represented in a form that can be

VIII Foreword

processed computationally. Judging from my own experience, extracting, and
representing in an explicit and unambiguous form such knowledge is very
difficult, which explains the lack of repositories of pedagogical expertise.

Second, it defines a pedagogical ontology of instructional objects. The on-
tology is simple, general, and it is on a level of granularity that makes it easy
for authors to add pedagogical annotation to their learning objects. In this
way learning objects can be searched and retrieved by their pedagogical func-
tion. This is an important contribution not only for course planning, but for
the entire area of e-learning, since the existing standards for learning object
annotations (e.g., lom) provide limited primitives for expressing pedagogi-
cal characteristics. An ontology-mapping language is proposed, that enables
linking repositories using other ontologies.

Most instructional planners that separate content from presentation plan-
ning encounter a problem – the need to focus on the presentation of a single
concept at a time. This problem is solved by the use of a hierarchical network
planner. From the initial goal setting – selecting a learning goal and scenario –
the proposed algorithm plans simultaneously the content and its presentation
according to the instructional methods and tasks that are applicable.

The selection of a planning algorithm and the definition of dynamic tasks
allow for an elegant solution to the old problem of whether to plan the entire
course in advance (thus achieving a general roadmap for the learner which
s/he can navigate in) or to plan dynamically only one step ahead (thus tak-
ing advantage of the most recent data in the learner model and being able
to adapt the course closely to the needs of the learner). The dynamic tasks
allow creation of a general course map comprising pedagogically meaningful
stages (tasks) and then expanding each dynamic task further, when the time
of execution approaches. This also allows for a degree of involvement for the
instructor or the learner in the planning process, since the instructor or learner
can manually create a plan for any dynamic task, while still enjoying the sup-
port of the system in selecting the general plan, creating sub-plan suggestions,
selecting relevant learning objects etc. The effect is a pedagogical “neutrality”
of the generated plan, allowing for self-directed learning.

A solution is proposed for ensuring smooth transitions between the indi-
vidual learning materials in the course through generation of narrative text
bridges. This is a novel and very useful contribution for the area of instruc-
tional planning. While the method of text generation using templates is not
novel per se, the use of this technique to create “smooth” presentations in
course planning has not been proposed before.

The planner is implemented as a Web service interacting with different
learning objects repositories through a mediator that maps their ontologies
to the one used by the planner. In this way interoperability with different
repositories of learning objects is insured. This feature distinguishes this work
from many others that are usable only in the context of one given system and
domain.

Foreword IX

Finally, the evaluation of the Paigos system both with respect to the
technical performance and usability in four different studies (formative and
summative evaluation) is a significant contribution by itself. The LeActive-

Math project has provided an excellent domain for implementing the tutor
and the possibility of evaluating the prototype with components developed
by researchers and with students in several different countries and institu-
tions. The fact that Paigos was evaluated on such a large-scale speaks for its
viability. Such large scale (not so much in terms of number of users, but in
terms of diversity of contexts) evaluation is not typical in the areas of ITS,
AI and education, adaptive hypermedia, or even e-learning, and the results
(both the problems encountered and the positive results) are very interesting
and instructive for anyone building a course-generation tool.

July 2008 Julita Vassileva

Preface

This book presents the topic of course generation based on hierarchical task
network planning (HTN planning). This course generation framework enables
the formalization and application of complex and realistic pedagogical knowl-
edge. Compared to previous course generation, this approach generates struc-
tured courses that are adapted to a variety of different learning goals and to
the learners’ competencies. The volume describes basic techniques for course
generation, which are used to formalize seven different types of courses (for
instance, introducing the learner to previously unknown concepts and sup-
porting the learner during rehearsal) and several elementary learning goals
(e.g., selecting an appropriate example or exercise).

The course generator presented in this volume is service-oriented, thus
allowing the integration of learning supporting services into the generated
course in a generic and pedagogically sensible way. Furthermore, learning
environments can access the functionality of the course generator using a
Web service interface. Repositories are treated as services that can register at
the course generator and make their content available for course generation.
The registration is based on an ontology of instructional objects. Its classes
allow categorizing learning objects according to their pedagogical purpose in
a more precise way than existing metadata specifications; hence it can be used
for intelligent pedagogical functionalities other than course generation.

Course generation based on HTN planning is implemented in Paigos and
was evaluated by technical, formative and summative evaluations. The tech-
nical evaluation primarily investigated the performance of Paigos; the for-
mative and summative evaluations targeted the users’ acceptance of Paigos

and of the generated courses.
Paigos was developed over a period of three years in the Active-

Math group at the German Research Center for Artificial Intelligence (DFKI
GmbH), Saarbrücken, Germany within the scope of the FP7 project LeAc-
tiveMath (contract number 507826).

I would like to thank my supervisor Erica Melis for her support during
my years in the ActiveMath group. Regardless of how much and what she

XII Preface

had to do, Erica was always available for discussion and support, and a never
dwindling source of ideas and suggestions. I am also deeply indebted for her
careful proofreading of this book.

I also wish to thank Jörg Siekmann for letting me become a member of his
research groups. His enthusiasm for artificial intelligence inspired my research
from the very beginning.

My special thanks goes to Julita Vassileva for accepting to be the second
referee of my thesis and to write the foreword of this book. I hope my research
does honor to her pioneering work in course generation.

My gratitude goes to Prof. Ruimin Shen, who enabled me to explore the
usage of course generation in a culturally different context in his e-learning
lab at Shanghai Jiao Tong University.

Research always takes place within a context. In Saarbrücken, I had the
privilege of being the member of two stimulating and encouraging research
groups, first the Omega group and then the ActiveMath group. A big thanks
for proofreading parts of this book goes to Martin Homik, George Goguadze,
Paul Libbrecht and Stefan Winterstein. A similar big thanks goes to Philip
Kärger and Tianxiang Lu for implementing several of my ideas.

Large parts of this book were written during the month I was part of the
Libbrecht family at “Chez Joséphine” in Saarbrücken. Merci à Paul, Corinne,
Pénélope, Mercure, Eliott et Gaspard pour leurs encouragements.

Above all, I want to thank my wife Kerstin. Thank you for your support
and patience. Without you, I wouldn’t be standing here. Finally, I am deeply
grateful to my parents whose support made my studies of computer science
possible.

July 2008 Carsten Ullrich

Contents

Part I Preliminaries

1 Introduction . 3
1.1 Motivation . 4
1.2 Contributions . 5

1.2.1 Service-Oriented Course Generation 6
1.2.2 Modeling of Pedagogical Knowledge 6
1.2.3 Adaptivity in Generated Courses . 7
1.2.4 Evaluation . 7

1.3 Overview . 8

2 Relevant Technologies . 11
2.1 Basic Terminology . 11
2.2 Semantic Web Technologies . 14

2.2.1 Extensible Markup Language . 15
2.2.2 Resource Description Framework . 15
2.2.3 OWL Web Ontology Language . 16

2.3 E-learning Standards . 17
2.3.1 Learning Object Metadata . 19
2.3.2 IMS Content Packaging . 20
2.3.3 IMS Simple Sequencing . 21
2.3.4 IMS Learning Design . 21

2.4 Mathematics in the Web . 22
2.4.1 OMDoc (Open Mathematical Documents) 22
2.4.2 The Learning Environment ActiveMath 22

2.5 Course Generation . 23
2.6 Hierarchical Task Network Planning . 26

2.6.1 Introduction to AI-Planning . 27
2.6.2 Introduction to Hierarchical Task Network Planning . . . 28
2.6.3 SHOP2 and JSHOP2 . 29
2.6.4 JSHOP2 Formalism. 29

XIV Contents

3 Descriptive and Prescriptive Learning Theories 37
3.1 Behaviorism . 37
3.2 Cognitivism . 38
3.3 Constructivism . 38
3.4 Instructional Design . 39
3.5 Competency-Based Learning . 40

3.5.1 Mathematical Competencies . 40
3.5.2 Competency Levels . 42

Part II PAIGOS

4 General Principles . 45
4.1 An Ontology of Instructional Objects . 46

4.1.1 Motivation . 47
4.1.2 Description of the Ontology . 49
4.1.3 Why an Ontology? . 53
4.1.4 Applications of the Ontology . 54

4.2 A Mediator for Accessing Learning Object Repositories 55
4.2.1 Related Work . 55
4.2.2 Overview of the Mediator Architecture 57
4.2.3 Querying the Mediator . 57
4.2.4 Ontology Mapping and Query Rewriting 58
4.2.5 Repository Interface and Caching . 59
4.2.6 Limitations of the Mediator as an Educational Service . 60

4.3 Pedagogical Tasks, Methods and Strategies 61
4.4 Representing Course Generation Knowledge in an HTN Planner 65

4.4.1 Motivation . 65
4.4.2 Mapping Pedagogical Tasks onto HTN Tasks 66
4.4.3 Course Generation Planning Problems 67
4.4.4 Critical and Optional Tasks . 68

4.5 Basic General Purpose Axioms and Operators 69
4.5.1 Testing for Equality . 69
4.5.2 List Manipulation . 69
4.5.3 Binding a Variable to All Terms of a Term List 71
4.5.4 Manipulating the World State . 71

4.6 Basic Operators and Methods of the Course Generation
Domain . 72
4.6.1 Inserting References to Educational Resources 72
4.6.2 Starting and Ending Sections . 76
4.6.3 Inserting References to Learning-Support Services 78
4.6.4 An Operator for Dynamic Text Generation 79
4.6.5 Dynamic Subtask Expansion . 80
4.6.6 Accessing Information about Educational Resources . . . 80
4.6.7 Axioms for Accessing the Learner Model 82

Contents XV

4.6.8 Processing Resources Depending on Learner
Characteristics . 86

4.6.9 Initializing and Manipulating Information about
the Learning Goal . 88

4.7 Converting a Plan into a Course . 92
4.8 Generating Structure and Adaptivity: Dynamic Tasks 99
4.9 Generation of Narrative Bridges and Structure 100

4.9.1 Empirical Findings . 101
4.9.2 Operator and Methods for Text Generation 103
4.9.3 Symbolic Representations of Dynamic Text Items 105
4.9.4 Generation of Structure Information 106

4.10 Summary . 108

5 Course Generation in Practice: Formalized Scenarios 111
5.1 Moderate Constructivist Competency-Based Scenarios 111

5.1.1 Course Generation and Constructivism –
a Contradiction? . 112

5.1.2 Selecting Exercises . 114
5.1.3 Selecting Examples . 121
5.1.4 Scenario “Discover” . 127
5.1.5 Scenario “Rehearse” . 142
5.1.6 Scenario “Connect” . 145
5.1.7 Scenario “Train Intensively” . 150
5.1.8 Scenario “Train Competencies” . 153
5.1.9 Scenario “Exam Simulation” . 155

5.2 Course Generation Based on Instructional Design Principles . . 161
5.2.1 Merrill’s “First Principles of Instruction” 161
5.2.2 Scenario “Guided Tour” . 162

6 Implementation and Integration . 169
6.1 Implementation . 169
6.2 Integration of PAIGOS in ActiveMath . 171

6.2.1 Course Generation in ActiveMath 171
6.2.2 Dynamically Generated Elements in a Table of Contents174
6.2.3 Usage of Learning-Support Services in ActiveMath 176
6.2.4 Template-Based Generation of Narrative Bridges 182
6.2.5 PAIGOS as a Service in ActiveMath 185

6.3 Course Generation as a Web-Service . 189
6.3.1 Interfaces . 190

7 Evaluation . 193
7.1 Technical Evaluations and Use Cases . 193

7.1.1 Evaluation of the Ontology . 193
7.1.2 Mediator Use Cases and Evaluations 195
7.1.3 Course Generation Use Cases and Evaluations 195

XVI Contents

7.1.4 Performance of PAIGOS . 196
7.1.5 Discussion . 201

7.2 Formative and Summative Evaluation . 201
7.2.1 Formative Evaluations . 202
7.2.2 Summative Evaluation . 205
7.2.3 Discussion . 213

Part III Conclusions

8 Related Work . 221
8.1 Early Work . 221
8.2 Generic Tutoring Environment . 222
8.3 Dynamic Courseware Generator . 223
8.4 ACE/WINDS . 224
8.5 Former Course Generator of ActiveMath 225
8.6 APeLS/iClass . 226
8.7 SeLeNe . 227
8.8 Statistical Methods for Course Generation 228
8.9 Approaches Using Hierarchical Task Network Planning 229
8.10 Ontologies for Instructional Design . 230

9 Future Work and Acknowledgments . 231
9.1 Future Work . 231

Complete List of User Comments . 233

References . 241

Index . 255

Part I

Preliminaries

1

Introduction

The concept of learning objects and their usage just-in-time, at the precise
moment whenever necessary, adapted to the context, is as old as technology-
enhanced learning itself:

The basic limitation of films in education is that the filmed material
has not been programmed properly into the course of study. Only now,
twenty years after the advent of the technique, are we beginning to
think of eight millimeter, cartridge load, single concept films for educa-
tion. Try to visualize two to ten minute segments of films, in self-load,
self-thread cartridges, on the shelf in every classroom so that students
or the teacher can display a demonstration of a scientific principle,
explanation of a theorem, or an event in history, anytime during the
class or course, simply by selecting the proper cartridge and pushing
it into a rear screen projector. Such could be the potential of filmed
material, properly programmed, in the future. [170]

This quote, from the very first international conference on technology-
enhanced learning in Germany in 1965 paints a future in which learning ob-
jects instantiated in video cartridges are “programmed” (the predominant
jargon at that time of behavioristic learning theories) into the course, selected
by students or teachers. This vision did not include the automatic selection
of learning objects, albeit the necessary techniques were already under inves-
tigation for almost a decade.

About ten years earlier, in 1956, a conference in Dartmouth gave birth
to the field “Artificial Intelligence”. The aim of describing any feature of
intelligence so precisely that machines can simulate it [98] today include the
skill of teaching, resulting in applications that support the student in various
ways while learning.

The work in this book describes teaching knowledge required for the au-
tomatic assembly of courseware in a previously unavailable level of detail.
A large set of primitives, covering basic functionalities such as searching for

C. Ullrich: Courseware Generation for Web-Based Learning, LNAI 5260, pp. 3–10, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

4 1 Introduction

learning objects, inquiring about the learner’s competencies, inserting learn-
ing objects, and others, are formalized. From these basic building blocks,
scenarios are assembled that support students in achieving complex learning
goals. This set of pedagogical knowledge is then integrated into a Web-based,
service-oriented architecture, in order to make this valuable expert knowl-
edge available to others. At the same time, this work does not marginalize
practical considerations. Thorough summative and formative evaluations as-
sessed the acceptance of such unfamiliar paradigms by students, and technical
evaluations made sure that the performance is suited for application in the
real-world.

The idea of inserting learning objects just-in-time in a course is thus real-
ized – albeit not based on film cartridges. In the following, we will start this
chapter by putting the above example into the world of today, i. e., the world
of digital resources.

1.1 Motivation

Today, the student interested in e-learning no longer faces the problem of
finding any educational resources but he (throughout this work, I will ran-
domly refer to the learner as “he” or “she”) is confronted with a much greater
challenge: finding the appropriate ones out of a very large set of possibilities.
A compilation of the Center for International Education at the University of
Wisconsin [11] lists about 50 publicly accessible learning object repositories,
some of them cataloging more than 16 000 individual resources. This over-
whelming amount makes it impossible for clients, be it learners, teachers, or
educational systems to search manually through the repositories to find those
resources that are appropriate for their current goals.

Say, the learner Anton wants to learn about the mathematical concept
“derivative”. This topic is new to him, but he has some rudimentary knowledge
about more basic concepts, such as “functions”. When searching for resources
on the Web the first choice is usually Google. At the time of writing a search
for “derivative” yields about 70 800 000 results. A refined search (“derivative
mathematics”) results in 1 260 000 links; a significantly smaller number but
still too large to handle. Furthermore, the results are polluted by irrelevant
links. Google (and other Web search tools) indexes all Web resources and does
not allow restricting a search to educational resources. Therefore, explanations
about the mathematical concept “derivative” are displayed alongside with
advertisement about “financial derivatives”.

Thus, in a second step, Anton searches learning object repositories. Brows-
ing through all repositories one by one would cost too much time. Therefore,
Anton accesses a Web-portal that offers federated search. Federated search
allows uniform access to a multitude of repositories and enables a client (a
human or a system) to pose queries that are answered by all repositories

1.2 Contributions 5

connected to the P2P network. Queries typically consist of keywords and ad-
ditional information (called metadata) about the desired resources, such as
learning context, typical learning time, etc.

Anton’s search at the Web-portal merlot [181] returns 25 resources,
which are of varying granularity and range from single applets to Web-sites
that teach a variety of topics, including derivatives. Anton now faces the ques-
tion which results are relevant for his goals and capabilities. In order to judge,
he would need to inspect them one by one. This takes time and, in the first
place, requires a very competent and self-organized learner who is able to
assess and to structure the retrieved content. In particular low-achieving stu-
dents do not always possess these skills and several empirical studies show
that these learners benefit from content organized according to pedagogical
principles [147, 137].

More abstractly speaking, posing queries to a multitude of repositories
provides only one part of the functionality required for the task of finding and
structuring appropriate educational resources. The task also requires pedagog-
ical skills for finding and assembling the resources. That is where course(ware)
generation comes into play. Course generation uses information about the re-
sources, the learner and his learning goals to generate an adapted sequence of
resources that supports the learner in achieving his goals.

However, previous course generators cannot handle complex learning goals.
In most course generators the learning goal just consists of the target concepts
the learner wants to learn about. But a user may have different objectives:
when the content is unknown to him, Anton requires detailed, comprehensive
information. Later, he might want to rehearse the content, which requires a
different course. When preparing for an exam, Anton wants to use a workbook,
which is yet another type of course.

While recent work on course generation often claims to use pedagogical
knowledge, the quality and extent of most of the work cannot be judged due
to insufficient descriptions. Schulmeister’s [163] criticism on adaptive systems
in general applies to course generation as well: a large percentage of existing
work neither describes the characteristics of the learner used for adaptivity
nor the methods and dimensions of adaptivity that are aimed at.

In addition, none of previous course generators has a service-oriented ar-
chitecture. They cannot perform federated search, nor can they make their
functionality available as a service to other systems.

1.2 Contributions

To overcome these and other problems, I developed the course generator Pai-

gos. I derived this term from the linguistic roof of “pedagogy”, which is
“paidagōgos”. In ancient Greece, the paidagōgos was the slave who took the
children to and from school [2]. Just like this slave, Paigos should provide
guidance and support to the learner, when requested. Paigos advances the

6 1 Introduction

state of the art of course generation by using many of the possibilities offered
by today’s (Semantic) Web, Artificial Intelligence and technology-enhanced
learning techniques. Paigos was developed in the context of the Active-

Math system [109]; however it is an independent module that can be used
with other systems as well. The formalized course generation knowledge can
be downloaded from http://www.activemath.org/pubs/cg.zip.

This work contributes to service-oriented course generation and modeling
of pedagogical knowledge. Several empirical evaluations served to assess the
practical value of Paigos.

1.2.1 Service-Oriented Course Generation

This work considers all software systems that are involved in course generation
as services. This includes the course generator, repositories and additional
tools that support the user during learning (called learning-support services).

A course generator service allows accessing course generation functionality
by well-defined Web-service interfaces. This way, if a learning management
system like Moodle [119] or any other system wants to offer course generation,
it can re-use the functionalities made available by Paigos and is not required
to implement the pedagogical knowledge itself.

Repositories are treated as services that can register at Paigos and make
their content available for course generation. However, a difficulty is that
the representation of resources often varies simply because different database
schemas may be used in the repositories. In addition, despite standardization
efforts such as lom [180] almost every repository available uses its own de-
scription of learning objects (or at least a variant of lom). Paigos uses a
mediator architecture that is based on an ontology of instructional objects to
overcome these problems.

Last but not least, Paigos views tools that support the learning process
as services, too. Paigos integrates these services, not arbitrarily but in a
pedagogically sensible way: during the learning process, at times the usage of
a tool can be more beneficial than at some other time. For instance, reflecting
upon the learned concepts may be most effective at the end of a lesson because
attention is not split between cognitive and meta-cognitive (reflective) activity.

1.2.2 Modeling of Pedagogical Knowledge

Paigos implements realistic pedagogical knowledge developed jointly with
pedagogical experts. This knowledge encodes how to generate courses that
help the learner to achieve his learning goals. Paigos’s domain knowledge
realizes a large set of learning goals, ranging from selecting single resources
such as examples and exercises to complete courses. This work contains a
detailed description of the implemented knowledge, which addresses Schul-
meister’s criticism and thus allows judgment and comparison of the course
generation knowledge.

http://www.activemath.org/pubs/cg.zip

1.2 Contributions 7

The knowledge is generic, that is, independent of the actual content, which
makes the knowledge reusable and applicable to other domains as well.

The basic pedagogical building blocks developed in this work are pedagog-
ically neutral. In practice, researchers as well as practitioners disagree on the
question which pedagogical principles to use for teaching. Hence, if a course
generator aims at wide-spread applicability, it should not impose any specific
learning theory. Paigos implements a novel competency-based pedagogical
approach as well as a more traditional approach based on instructional design
guidelines.

The courses that result from applying the formalized knowledge are struc-
tured according to pedagogical principles. This structure is made explicit by
the nested sections of the table of contents and by bridging texts that are cre-
ated during course generation. This structure and the bridging texts convey
to the learner additional information about the learning process that he can
later use to structure his own learning.

1.2.3 Adaptivity in Generated Courses

Course generation faces a dilemma: on the one hand it makes sense from a
pedagogical point of view to generate a complete course immediately after
receiving the learner’s request, instead of selecting and presenting one re-
source after another: in one-shot generation, the learner sees how the content
is structured and he can freely navigate. On the other hand, if a long time-
span separates between the generation and viewing of a page, assumptions
about the learner made during course generation may have become invalid,
resulting in an inadequate course. Hence, if possible, the course generation
should be dynamic in the sense that it uses the most up-to-date information
about the learner that is available.

The solution presented in this work is based on dynamic subtask expan-
sion: course generation may stop at a level that specifies what kind of edu-
cational resources should be selected but does not specify which ones. The
specific resources are selected as late as possible, that is, only at the time
when the learner actually wants to see them. An important aspect of dy-
namic subtask expansion is that this technique can be used by human “course
generators” as well, i. e., authors that manually compose courses: an author
can define a course where parts of the course are predefined and others dy-
namically computed, taking the learner model into account. In this way, an
author can profit from the best of both worlds: she can compose parts of the
course by hand and at the same time profit from the adaptive features of the
course generator.

1.2.4 Evaluation

Evaluations are an integral part of this work. A technical evaluation investi-
gated the performance of Paigos under various conditions. The results show

8 1 Introduction

that using the techniques described in this book the generation of courses
with an approximated reading time of about 11 hours takes place in about
half a second. The results also illustrate the drawbacks of service-oriented
architectures: the above figures were obtained under optimal conditions, i. e.,
the latency of the services accessed during course generation was minimized.
In real life, performance decreases, due to the large amount of queries send
over the Web to the repositories and learner model.

Several formative and a summative evaluations investigated course gener-
ation from the learners’ and teachers’ point of view. In summary, users appre-
ciate the tailoring of the content to their goals and they prefer dynamically
generated over traditional, static books.

So, what would Anton’s usage of Paigos look like?
Using the techniques described in this work, Anton is able to find what he

is looking for. Paigos allows Anton to state his precise learning goal, in this
case “discover derivatives”, and to receive a structured sequence of educational
resources that helps him to achieve his learning goal. Figure 1.1 contains the
table of contents generated for Anton. At a later time, when Anton wants to
rehearse the same content, he can use Paigos to generate a new course, which
is again adapted to new his needs (Figure 1.2).

1.3 Overview

This book consists of three parts. Part I introduces the preliminaries of the
work, Part II describes Paigos and Part III concludes the book with a de-
scription of related work, a summary and an outlook to possible extensions.

Part I Preliminaries

Chapter 2 describes the technologies relevant for this work. First, I introduce
Semantic Web technologies, starting with the basic building block xml and
then explaining how this general-purpose markup language is used to convey
semantic information in rdf and owl (Section 2.2). A second area relevant
for this work is standards used for technology-enhanced learning. I describe
these in Section 2.3. The basic concepts of course generation are the topic of
Section 2.5. The AI framework I used to implement the pedagogical knowl-
edge, i. e., Hierarchical Task Network Planning, is explained in Section 2.6.
The first part concludes with a brief overview on non-technical information
relevant for this work, namely descriptive and prescriptive learning theories
(Chapter 3).

Part II PAIGOS

This part consists of four chapters. Chapter 4 introduces general principles
for course generation. It starts with an ontology of instructional objects that
allows describing educational resources such that pedagogically useful and

1.3 Overview 9

Fig. 1.1. A detailed course for Anton about “derivative”

Fig. 1.2. A course supporting Anton to rehearse “derivative”

10 1 Introduction

intelligent services become feasible (Section 4.1). In Section 4.2, I present a
mediator architecture that enables Paigos to access educational resources
stored in third-party repositories. The remaining sections 4.3 to 4.10 describe
the techniques Paigos uses to employ HTN planning for course generation,
such as the basic operators and methods and the conversion of generated plans
into table of contents.

In Chapter 5, I explain how the previously described basic operator and
methods are put into use to realize course generation for different learning
goals based on different pedagogical paradigms, namely moderated construc-
tivism (Section 5.1) and instructional design (Section 5.2).

Technical details of the implementation, of the integration of Paigos into
the learning environment ActiveMath, and of the Web-service interfaces are
subject of Chapter 6.

In Chapter 7.2, I present the results of the technical, formative and sum-
mative evaluations of Paigos.

Part III Conclusion

This part concludes this book. I start with presenting related work (Section 8)
followed by an outlook to possible extensions (Section 9).

2

Relevant Technologies

This chapter describes the technologies which are relevant for intelligent
technology-supported instruction in the World Wide Web. The basic termi-
nology, e. g., the concept of a learning object, is introduced in Section 2.1.
Today’s and tomorrow’s World Wide Web, that is, the current basic stan-
dards and their extensions into the Semantic Web are topic of Section 2.2.
Web-based technology-supported instruction heavily relies on standards de-
scribing learning materials and collections of learning material. These are pre-
sented in Section 2.3. The chapter concludes with a section on AI-planning
(Section 2.6), which provides the basics needed to understand how Paigos

implements pedagogical knowledge.

2.1 Basic Terminology

Learning Object

Wiley [209] defines a learning object as “any digital resource that can be
reused to support learning”. This definition points out three characteristics
that are relevant for this volume:

• Digital: a learning object has to be available in some digital format, i. e.,
it is stored on a medium (say a hard disk, CD-ROM, Web page) and is
visualized by a computer. This is in contrast to other definitions, e. g.,
[180], that include non-digital resources.

• Reuse: a learning object can be used in a way or context different from
the one it was originally designed for (see Section 2.3 for more details on
reuse of learning objects).

• Learning Support: a learning object is designed to serve the purpose of
assisting a learner in this learning process. For instance, it can provide a
definition of a concept in the domain, or an interactive opportunity used
for exploration purposes.

C. Ullrich: Courseware Generation for Web-Based Learning, LNAI 5260, pp. 11–36, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

12 2 Relevant Technologies

According to Wiley [209], the concept of “learning object” is based on
the object-oriented paradigm of software design. There, the goal is to create
highly reusable software components that can be employed in a large number
of contexts. Each object has a well-defined and specific functionality. Likewise,
a learning object is a small piece of learning material that can be reused in
different learning contexts.

However, the above definition is still too broad for automatic (re-)use of
learning objects. It neither addresses the question of how to locate a learn-
ing object, nor its granularity. Thus in the scope of this volume, instead of
learning object, I will use the term educational resource, with the following
characteristics:

Educational Resource

An educational resource is an atomic, self-contained learning object that is
uniquely identifiable and addressable by an uri, i. e., an Uniform Resource
Identifier [12]:

• An educational resource must consist of the smallest possible (atomic)
but still understandable and complete learning material (self-contained).
If any content is removed from such an educational resource, then it can no
longer be grasped without referring to additional resources. An example is
a self-contained paragraph in a textbook. A complete course, although it
might be self-contained, is not atomic, and hence does not classify as an
educational resources as defined in this volume.

• Moreover, an educational resource is accessible through the Web (address-
able), identified using an uri.

Course generation is a service that (re-)uses existing educational resources
and arranges them adapted to a learner’s individual context in order to cre-
ate new learning opportunities. For a flexible and personalized reuse, these
resources must consist of small entities, which can be presented in a Web-
based learning environment (and thus must be identifiable and addressable).

I will distinguish between non-aggregated learning objects (educational
resources and learning-support services) and learning objects that aggregate
the basic learning objects (pages, sections, courses).

Learning-Support Service

A learning-support tool is any application that supports the learner during her
learning process1 in a targeted way and can be integrated into the learning
process automatically. A related concept is “cognitive tool”. According to
Mayes [96], “[a] cognitive tool can be regarded as an instructional technique

1 Here, learning process is used in the sense of the series of interactions or steps
that take place during learning, and not in the sense of a cognitive activity taking
place in the learner’s mind.

2.1 Basic Terminology 13

A page

A course

A section

Fig. 2.1. An example of a course presented in ActiveMath

in so far as it involves a task, the explicit purpose of which is to lead to active
and durable learning of the information manipulated or organized in some way
by the task”. Work on cognitive tools often stresses that a specific cognitive
process has to be supported [194]. In the scope of this volume, this requirement
is too restrictive, as tools that support learning without targeting a specific
cognitive process would then be excluded. Another difference to cognitive tools
is the requirement that a learning-support tool needs to be available in a way
that allows its automatic integration into a course. More specifically, it must
be reachable by following a link, and, optionally, configurable via parameters.
Later in this volume, I describe how the course generator itself can be used as a
learning-support tool (Section 4.8) and how a template-based text generation
can be used to extend courses with dynamically generated texts in order to
support meta-cognitive learning (Section 4.9).

Page

A page is an ordered list of references to educational resources and learning-
support services.

Section

A section consists of an ordered list of pages and/or sections.

Course

A course is a section that is an “instructionally complete” sequence of educa-
tional resources, i. e., it contains all resources required for a learner to reach
a high-level learning goal, say “rehearse the difference quotient”.

Figure 2.1 illustrates these concepts using a course presented in the learn-
ing environment ActiveMath (for an overview on ActiveMath, see Sec-
tion 2.4.2).

14 2 Relevant Technologies

Fig. 2.2. The Semantic Web Layer Cake

2.2 Semantic Web Technologies

The vision of the Semantic Web as drawn by Berners-Lee et al. [13] describes
an extension of today’s human-readable Web into a Web that represents in-
formation in a way that is meaningful for machines, too. Such a Web would
be crawled by agents the same way Google and Co. do today, yet working on
semantics, rather than on syntax. As a result, services that today still require
human intervention could cooperate automatically, thus resulting in a new
quality of services.

The Semantic Web is a major focus of the World Wide Web Consortium
(W3C), a consortium that designs and defines most of today’s Web stan-
dards (called “recommendations” in W3C jargon), such as html, xhtml,
etc.2 About half a decade after the initial paper by Berners-Lee et al., the
basic technologies of the Semantic Web have been developed and standard-
ized. Some of these technologies are relevant for this volume and they will be
described below.

The “Semantic Web Layer Cake” illustrated in Figure 2.2 provides an
overview of the layered structure of the Semantic Web (diagram taken from
Wikipedia, [193]). I will use it in the following to guide the description of the
standards associated to the layers. Each layer builds on the lower layer. The
first three layers provide a common syntax (see the next section). The next
two layers add the semantics to the Web (see Section 2.2.2 and 2.2.3). The top
layers allow inferring new knowledge from the explicitly provided information
and to check the validity of the statements made in the Semantic Web. These
are not directly relevant for Paigos.

2 http://www.w3.org [202].

http://www.w3.org

2.2 Semantic Web Technologies 15

2.2.1 Extensible Markup Language

The very basic layers of the Semantic Web provide a standard way to exchange
symbols (unicode) and refer to resources (uniform resource identifier, uri,
based on ascii and internationalized resource identifier, iri, based on uni-

code).
The “Extensible Markup Language” (xml) is a general-purpose markup

language based on uri/iri and unicode, which provides a syntax for struc-
tured documents [173]. Basically, it fixes a notation for describing labeled trees
[176]. However, it imposes no semantic constraints on the meaning of these
documents. Systems that use xml-based languages to exchange data have to
agree on a common structure, provided either by Document Type Definitions
(dtd) or xml-Schemas [203].

2.2.2 Resource Description Framework

The “Resource Description Framework” (rdf) is a first step towards semantics
on the Web [93]. rdf allows making statements about resources using subject-
predicate-object expressions called triples. The subject denotes the resource
the statement is about and the predicate describes the relationship that holds
between the subject and the object.

Example 2.1. The statement “http://www.example.org/index.html” was
created on August, 16, 1999” could be represented by an rdf statement with
the subject http://www.example.org/index.html,
the predicate http://www.example.org/terms/creation-date,
and the object “August 16, 1999” (example taken from [93]).

rdf can be expressed in a number of ways. The following is an exam-
ple using the xml-syntax of rdf. The first line contains the xml decla-
ration. It indicates that the content is provided in xml, version 1.0. The
subsequent line begins an rdf element and introduces the namespaces rdf
and exterms (line three). A namespace provides a context of the resources
it contains and allows to distinguish between resources which share the
same name. Lines four to six specify the relation described in Example 2.1:
http://www.example.org/index.htmlwas created on August, 16, 1999. The
final line closes the rdf element.

Example 2.2. Expressing Example 2.1 using the xml-syntax of rdf:

1 <?xml version="1.0"?>

2 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

3 xmlns:exterms="http://www.example.org/terms/">

4 <rdf:Description rdf:about="http://www.example.org/index.html">

5 <exterms:creation-date>August 16, 1999</exterms:creation-date>

6 </rdf:Description>

7 </rdf:RDF>

16 2 Relevant Technologies

rdf allows making statements about resources. However, it provides no
means to define the vocabularies used in the statements. That is where rdf

schema comes into play. rdf schema allows defining classes and properties,
and how these are used together [93]. Basically, rdf schema provides a type
system for rdf.

The following rdf schema statement defines the class Instructional-
Object. rdf:ID (line six) is called fragment identifier and specifies that its
value is to be interpreted relative to the base uri given in line five. There-
fore, the rdf:Description element specifies that the resource located at
http://www.activemath.org/resources/#InstructionalObject is of type
http://www.w3.org/2000/01/rdf-schema#Class.

Example 2.3.
1 <?xml version="1.0"?>

2 <rdf:RDF

3 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

4 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

5 xml:base="http://www.activemath.org/resources">

6 <rdf:Description rdf:ID="InstructionalObject">

7 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>

8 </rdf:Description>

9 </rdf:RDF>

In addition to providing a vocabulary for defining classes, rdf schema
allows describing properties of a class. The following rdf schema statement
states that an instructional object has a learning context.

Example 2.4.
<rdf:Property rdf:ID="hasLearningContext">

<rdfs:domain rdf:resource="#InstructionalObject"/>

<rdfs:range rdf:resource="#LearningContext"/>

</rdf:Property>

While rdf schema provides some basic capabilities for describing rdf vo-
cabularies, more advanced capabilities can also be useful. These are provided
by ontology languages.

2.2.3 OWL Web Ontology Language

Ontology

Gruber [53] defines an ontology as “explicit formal specifications of the terms
in the domain and relations among them”. According to Noy and McGuinness
[134], the principal advantages of making information explicit in ontologies
include a shared common understanding of the domain among systems and
to enable re-use of domain knowledge.

The “OWL Web Ontology Language” (owl) provides a full-grown vo-
cabulary for defining ontologies, i. e., describing classes, properties, relations

2.3 E-learning Standards 17

between classes (e.g. disjointness), cardinality (e. g., “exactly one”), equal-
ity, richer typing of properties, characteristics of properties, and enumerated
classes [193].

owl provides the three sublanguages owl Lite, owl DL, and owl Full,
which offer on the one hand increasing expressiveness, yet on the other hand
increasing computational complexity:

• owl Lite provides the means to define classification hierarchies, together
with simple cardinality constraints.

• owl DL offers maximum expressiveness while retaining computational
completeness and decidability. The “DL” illustrates the correspondence to
the field of Description Logics.

• owl Full provides the full, unconstrained expressiveness of the owl vo-
cabulary, yet without any computational guarantees.

We will encounter owl again in Chapter 4.1, where it is used to describe
an ontology of types of instructional objects.

2.3 E-learning Standards

The authoring of educational resources is one of the major cost factor of e-
learning [162]. One approach to reduce the associated costs is to enable reuse,
or, more specifically, interoperability of educational resources.

Reuse

Reuse can be defined as “[u]sing a digital learning resource in a way or in a
context other than that for which it was originally designed” [154]. For in-
stance, an author might be able to take an existing example for his course
instead of having to develop his own. The definition does not impose any con-
straints on the effort required for reuse. The author might simply drag&drop
the resource (a very efficient form of reuse) or he might be required to manu-
ally copy the content. The required effort is taken into account in the concept
of interoperability.

Interoperability

Interoperability is “[t]he extent to which a digital learning resource will plug
and play on different platforms” [154]. Interoperability implies a degree of
automatization. Ideally, a resource developed in one context can be directly
used in a different context. In reality, however, resources often require some
adaptations.

Reuse and interoperability of resources require the involved parties to be
able to interpret each others materials. While in principle, rdf, rdf schema,
and owl can be used for describing resources semantically, today, xml is still
the most widely spread means to define the syntax and structure of resources.
The vocabulary of what is being described is often described in standards :

18 2 Relevant Technologies

Standard

A standard is “[a] specification that is recognized as the accepted way to
achieve a technical goal either because it is widely adopted or because it has
been accredited by a formal standards body” [154].

In field of e-learning, the ieee Learning Technology Standards Commit-
tee (ieee ltsc)3 is the best known formal standard body. It is chartered by
the ieee Computer Society Standards Activity Board to develop accredited
technical standards, recommended practices, and guides for learning technol-
ogy [38].

In addition to the standardization bodies, several consortia carry out the
technical work of designing the standards. Once a standard has been designed
and agreed upon, they are submitted to the standard bodies. Consortia with
a direct impact on educational technologies include the following.

• The “Advanced Distributed Learning Initiative” (adl) was formed as a
developer and implementer of learning technologies across the US Depart-
ment of Defense.4 adl is best know for the Shareable Content Object
Reference Model (Scorm, [36]), which aims to foster an overall specifica-
tion for interoperability of learning objects among learning environments.

• The goal of the European Ariadne Foundation is to create tools and
methodologies for producing, managing and reusing educational resources.5

In contrast to adl’s military motivated aims, Ariadne emphasizes on so-
cietal objectives: “[f]oster cooperation between educational bodies
Keep social and citizenship aspects domination Education Uphold
and protect multilinguality Define by international consensus what
aspects of ICT [information and communication technology]-based forma-
tion should be standardized and what should be left local” [7].

• The ims Global Learning Consortium (ims/glc) encompasses vendors of
learning management systems, authoring tools, and related products.6

ims/glc’s specification activities cover a wide spectrum of e-learning rele-
vant aspects and are generally adhered to by all major commercial players.
The subsequent sections will describe the ims/glc specifications relevant
for this volume in more detail.

For a detailed description on standardization bodies and consortia, please
refer to [38].

3 http://ieeetlsc.org [61].
4 http://www.adlnet.gov [99].
5 http://www.ariadne-eu.org [7].
6 http://www.imsglobal.org [64].

http://ieeetlsc.org
http://www.adlnet.gov
http://www.ariadne-eu.org
http://www.imsglobal.org

2.3 E-learning Standards 19

2.3.1 Learning Object Metadata

Metadata

ieee ltsc [2002] defines metadata as “information about an object, be it
physical or digital”. Metadata thus provides descriptive information about an
object in an explicit manner.

The ieee ltsc Learning Object Metadata standard (lom) provides a de-
fined “structure for interoperable descriptions of learning objects” [180]. lom

is based on early work by Ariadne and ims/glc and has been approved as
a standard by ieee ltsc.

lom provides a vocabulary to describe educational resources, which is
divided in nine categories (list taken from [180]):

1. The “General” category groups the general information that describes the
learning object as a whole.

2. The “Lifecycle” category groups the features related to the history and
current state of this learning object and those who have affected this
learning object during its evolution.

3. The “Meta-Metadata” category groups information about the metadata
instance itself (rather than the learning object that the metadata instance
describes).

4. The “Technical” category groups the technical requirements and technical
characteristics of the learning object.

5. The “Educational” category groups the educational and pedagogic char-
acteristics of the learning object.

6. The “Rights” category groups the intellectual property rights and condi-
tions of use for the learning object.

7. The “Relation” category groups features that define the relationship be-
tween the learning object and other related learning objects.

8. The “Annotation” category provides comments on the educational use of
the learning object and provides information on when and by whom the
comments were created.

9. The “Classification” category describes this learning object in relation to
a particular classification system.

Although the standard only specifies an xml-binding, a rdf specification
of lom was proposed by [130].

lom strives for general applicability, and hence it is the least common de-
nominator for a large number of interested parties. As a result, some of its
vocabulary can be criticized as being insufficiently precise for specific pur-
poses. In Section 4.1, I will describe an instructionally motivated replacement
of the learning resource type as defined in lom’s educational category.

20 2 Relevant Technologies

2.3.2 IMS Content Packaging

lom describes single resources, but it does not provide means for exchanging
structured sets of educational resources. That is where ims Content Packaging
(ims cp) comes into play [47]. It provides a standardized way of collecting and
packaging educational resources to enable efficient aggregation, distribution,
and deployment.

Fig. 2.3. An overview on the structure of an ims Content Package (illustration
from [47])

Figure 2.3 illustrates the structure of an ims Content Package. The com-
plete content package is exchanged as a Package Interchange File, a zip-
compressed package. The package contains the educational resources (physical
files) as well as structuring information, provided in the manifest. A manifest
can contain sub-manifests. Each manifest contains a metadata section that
provides information about the manifest, an organization section that de-
scribes the static organization of the content, a resource section the contains
references to all of the resources and media elements needed for a manifest
(including those from external packages), and optionally one or more logically
nested manifests.

In theory, two systems that implement the ims cp standard are able to
exchange sets of resources by loading each others content packages. In practice,
however, the formats of the resources play an important role: a Web-based
system will have problems when integrating resources encoded in say Power
Point format.

2.3 E-learning Standards 21

2.3.3 IMS Simple Sequencing

An ims cp specifies the structure of a collection of educational resources. ims

simple sequencing (ims ss) takes this approach one step further by allowing
an author to specify sequences how a learner can traverse the resources [49].
Basically, an ims ss structure consists of an ims cp together with navigation
paths.

Central to ims ss is the notion of an activity. Each resource contained in
an ims cp can be associated with an activity. Each activity can be associated
with sequencing information, sequencing rules and learning objectives.

Sequencing information covers the control mode of the interaction, e. g.,
whether the student can navigate freely or is guided through the content.
Sequencing rules specify how to react depending on the learner’s action, for
instance, which activity to present next, or whether to display the current
activity.

Learning objectives are specified very abstractly. They are objects, with a
unique identifier, a satisfaction status (e. g., passed, failed) and an satisfaction
measure (the degree to which the objective was achieved). The satisfaction
status changes depending on the results of the student interactions. For in-
stance, it is possible to specify that an objective is fulfilled if the student has
a higher achievement in the current activity than 0.8.

As its name indicates, ims ss provides a rather limited and simple approach
to sequencing. It restricts itself to a single user in the role of a learner and
does not address several simultaneous users and different roles. Furthermore,
the ways of controlling the sequencing and navigation are limited.

Although the specification claims to be “pedagogical neutral”, the very
strict control of the learner navigation, based only on the performance, bears
similarities to the restricted mode of interactions inherent in behavioral learn-
ing theories (see Section 3.1).

2.3.4 IMS Learning Design

Ims Learning Design (ims ld) provides a pedagogical meta-model [48]. It
allows describing how people perform activities using educational resources
and how the activities are coordinated in a learning process.

ims ld was originally developed at the Open University of the Netherlands,
and is still widely known under its previous name “Educational Modelling
Language” [86].

Key concepts in ims ld including roles and activities of people. The over-
all design (the play) specifies how collections of activities performed by the
involved people interact.

Due to its generality, ims ld is a quite complex standard. It is hard to
implement and is not yet completely supported by existing systems [67].

ims cp, ims ss and ims ld are relevant for this work because they define
potential output formats of the course generated by Paigos. Using a stan-
dardized format increases the range of potential clients of the course generator

22 2 Relevant Technologies

service. In Chapter 6, I will discuss the three different standards and their ap-
plicability with respect to course generation, and motivate why I chose ims cp

as output format.

2.4 Mathematics in the Web

This section describes ActiveMath, the learning environment in which Pai-

gos is embedded and OMDoc, the knowledge representation used in Ac-

tiveMath.

2.4.1 OMDoc (Open Mathematical Documents)

OMDoc (Open Mathematical Documents) is a semantic markup language
for mathematical documents [84, 85, 107]. It has evolved as an extension of
OpenMath [23] which is a standard for mathematical formulas. The main
difference between OpenMath and other representation formats for mathe-
matical formulas, such as Presentation MathML and LATEX, is that Open-

Math deals with the semantics of mathematical expressions rather than with
their presentation. OpenMath defines so-called Content Dictionaries in which
mathematical symbols are declared and their semantics is defined. The se-
mantic representation of formulas allows for automatic translation of these
formulas to (and from) the languages of different mathematical systems (via
so-called phrasebooks). This provides the basis for interoperability in different
computer algebra and other reasoning systems.

OMDoc defines learning objects such as exercises, definitions, and rela-
tions between them. Such learning objects can consist of text mixed with
formulas in OpenMath format. The semantic information includes types, re-
lations, and other mathematical and educational metadata. The type indicates
a characterization of the items as collection, theory, concept or satellite items:
an OpenMath symbol defines a mathematical concept abstractly; a theory
assembles concepts and it can import other theories; concepts (definitions, al-
gorithms, and assertions/theorems) are the main items of mathematical con-
tents, whereas satellites (exercises, examples, explanations, introductions) are
additional items of the content which are related to one or several concepts.
All items are accessible via a unique identifier.

2.4.2 The Learning Environment ActiveMath

ActiveMath [106, 109] is a Web-based intelligent learning environment for
mathematics that has been developed since the year 2000 at the Saarland Uni-
versity and at the German Research Center of Artificial Intelligence (DFKI).7

7 www.activemath.org,[1].

www.activemath.org

2.5 Course Generation 23

ActiveMath uses an extension of OMDoc to encode its educational
resources. In addition to presenting pre-defined interactive materials, it uses
Paigos for course generation.

A presentation component transforms the OMDoc documents represented
in xml to the desired output format, e. g., html, xhtml +MathML, and
pdf. A learner model stores the learning history, the user’s profile and pref-
erences, and a set of beliefs that the systems holds about the cognitive and
meta-cognitive competencies and the motivational state of the learner. The
domain model that underlies the structure of the learner model is inferred
from the content for that domain and its metadata.

A complex subsystem in its own right is ActiveMath’s exercise subsys-
tem [51] that plays interactive exercises, computes diagnoses and provides
feedback to the learner in a highly personalized way. It reports events to in-
form the other components about the users’ actions.

In 2007, at the time of this writing, a significant amount of educational
resources exists in ActiveMath’s repositories for Fractions (German), Differ-
ential Calculus (German, English, Spanish) at high school and first year uni-
versity level, operations research (Russian, English), Methods of Optimization
(Russian), Statistics and Probability Calculus (German), Matheführerschein
(German), and a Calculus course from University of Westminster in London.

To realize a smooth and efficient cooperation of all components and in
order to integrate further internal and external services, ActiveMath has
a modular service-oriented architecture. It includes the xml-rpc Web com-
munication protocol for simplicity and remote support. In addition, an event
framework enables asynchronous messaging between system components.

2.5 Course Generation

This section introduces the basics of course generation and the standard
components a course generator typically consists of. Based on Brusilovsky
and Vassileva [19], I will distinguish between course(ware) generation and
course(ware) sequencing.

Course Generation

Course generation uses pedagogical knowledge to generate a structured se-
quence of learning objects that is adapted to the learners’ competencies, in-
dividual variables, and learning goals. This generation happens upon request
of a client (a learner or a software system). Ideally, the sequence is not a
flat list of learning objects but is structured in sections and subsections. This
structure can convey additional information relevant to the learning process.
In course generation, the course is generated completely before it is presented
to the learner. This early generation has the advantage that the course can
be visualized to the learner, thereby informing her about the structure. In
addition, the student can navigate freely through the course.

24 2 Relevant Technologies

Course Sequencing

Course sequencing uses pedagogical knowledge to dynamically select the most
appropriate resource at any moment, based on the current needs and goals of
the learner. Thus, the course is not generated beforehand but step-by-step.
The benefit of this approach is that it can react to the current context and
thereby circumvent problems that arise in course generation if assumptions
about the learner change. However, this local approach, with its transitions
from resource to resource makes it hard to convey information about the
structure of a course and the sequence from start to end can not be presented
to the learner.

Course generation has long been a research topic and is also called “cur-
riculum sequencing” and “trail generation”. It has been reinvented several
times, which leads to a vast amount of terminology used in the literature for
the same technical concept. To avoid this confusion, I use the following sec-
tions to define the relevant basic concepts and describe them in relation to a
reference architecture.

Reference Model

A reference model is an abstract representation of the entities and relation-
ships of some environment. It is used as an abstract template for the develop-
ment of more specific models of that environment. A reference model simplifies
the comparison between different systems implementing the model [135].

A reference model for course generation systems has not yet been devel-
oped. However, reference models exist for adaptive hypermedia system, which
Brusilovsky [18] defines as follows:

Adaptive Hypermedia System

“By adaptive hypermedia systems we mean all hypertext and hypermedia
systems which reflect some features of the user in the user model and apply
this model to adapt various visible aspects of the system to the user. In other
words, the system should satisfy three criteria: it should be a hypertext or
hypermedia system, it should have a user model, and it should be able to
adapt the hypermedia using this model.”

According to this definition, a course generation system can be classified
as an adaptive hypermedia system. The visible aspects that are adapted are
the sequences through the educational resources.

Several reference architectures for adaptive hypermedia systems do exist.
The first, the Adaptive Hypermedia Application Model (aham), was proposed
by De Bra et al. [32]. It is based on the Dexter hypertext reference model [54],
and extends it to encompass adaptive hypermedia techniques. Koch and Wirs-
ing [83] describes an object-oriented reference model formalized the Unified
Modeling Language (uml) [136]. A logical characterization of adaptive hyper-
media systems is given by Henze and Nejdl [59]. Their model allows formal-
izing parts of the adaptive features using first-order logic. In the following,

2.5 Course Generation 25

I mostly use the terms as defined by the aham reference model, which is the
most wide-spread architecture. The basic ingredients of an adaptive hyperme-
dia system are concepts and the three-tier architecture, consisting of a domain
model, a user model, and a teaching model.

Concept

A concept is an abstract representation of an information item from the ap-
plication domain.

Domain Model

The domain model contains the educational resources, and, depending on the
specific system, the domain concepts. Additional information associated to the
domain model includes metadata and the domain structure (often represented
by a graph) that models the relationships between resources. In case the do-
main model contains resources as well as concepts, the connections between
them are called anchors [32] or indices [19].

User Model

The user model (also called learner model) manages information about users.
Based on observations of the user’s interactions, it stores, infers and updates
information about an individual user. Examples of user models are overlay
models and stereotype user modeling. In the former approach, first proposed
by Carr and Goldstein [24], the user model contains the knowledge of a domain
expert. The individual user’s knowledge is represented as a subset of that
knowledge. In stereotype user modeling, proposed by Rich [155], each learner
belongs to a specific class whose characteristics he inherits.

Teaching Model

The teaching model (or adaptation model) contains the knowledge how to
adapt the behavior of the system, e. g., how to present content from the domain
model taking into consideration the information provided by the user model.
Often, this knowledge is provided as a set of rules.

Vassileva [199] distinguishes between two different functionalities provided
by the rules of the teaching model, content planning and presentation plan-
ning.

Content Planning

Content planning reasons about the domain model and determines the domain
concepts the generated course will cover. Usually, this process makes use of
the domain structure.

26 2 Relevant Technologies

Presentation Planning

For each concept selected during content planning, presentation planning de-
termines the educational resources used to convey the information about the
concept to the learner.

This distinction was originally coined by Wasson [205] (then called con-
tent planning and delivery planning), yet at that time in the scope of one-
to-one tutoring. Other authors [e. g., 71] use the terms concept selection and
content selection for these processes. The distinction between content and
delivery planning is also made in other domains, e. g., natural language gen-
eration [153].

Course Planning

The process of producing a course is called course planning. The result of the
planning is a course plan (plan in the AI-sense, see Section 2.6). From this
plan, a course can be constructed.

Instructional Tasks

Following Van Marcke [197], I define a task as an abstract activity that can
be accomplished during the learning process at various levels of granularity.
In principle, tasks are generic, i. e., they can be applied across domains, or at
least within a domain. The tasks developed in this volume are applicable for
well-structured domains. They were mostly applied for learning mathematics,
although one application target workflow-embedded e-learning in enterprise
and office environments (see the section about evaluations for further details).

Instructional Methods

An instructional method specifies means to accomplish a task. It encodes do-
main expert knowledge how to proceed in order to perform the activity rep-
resented in a task. Typically, a method decomposes a task into subtasks, i. e.,
it breaks down an activity into smaller activities. Like tasks, most methods
are generic, and can be applied in a large number of circumstances. Methods
normally carry application conditions that specify the conditions under which
a method can be applied. As an example, a method could decompose the task
“rehearse content” into the subtasks “show content”, “illustrate content”, and
“train content”.

The distinction between task and methods, i. e., between what to achieve
and how to achieve it clearly separates different kinds of knowledge [174].

2.6 Hierarchical Task Network Planning

In the following, I describe the planning algorithm used in Paigos and start
with a general overview of Artificial Intelligence (AI) Planning that introduces

2.6 Hierarchical Task Network Planning 27

the basic planning vocabulary. Sections 2.6.2 to 2.6.4 provide the details of
the Hierarchical Task Network Planner shop2 and its Java version jshop2
employed in Paigos. These three sections owe a lot to [214] and [62].

2.6.1 Introduction to AI-Planning

AI-Planning/AI-Planning Problem

AI-planning provides an intelligent agent with the means of generating a se-
quence of actions that will achieve his goals [157]. Generally speaking, a plan-
ning problem consists of:

• the initial state that represents the state of the world at the time the agent
begins to act;

• the goal the agent wants to achieve; and
• the possible operations that the agent can perform, formalized as operators.

Planner/Actions

The algorithm that is applied to a planning problem in order to solve it is
called a planner. The result of the planning process, the plan, is a sequence of
instantiated operators, which are called actions . The execution of the actions
starting in any world that satisfies that initial state will achieve the goal.

Planning Language

The language that is used to describe the planning problem influences the
kind of problems that can be solved by the planner. A language should be
expressive enough to represent a variety of problems, while at the same time
restrictive enough to allow efficient planning.

A classic planning language is strips [41]. In strips, a state is represented
by a conjunction of positive ground literals. The goal state is partially spec-
ified. A goal g is fulfilled in a state s if s contains all literals of g. Operators
consist of a precondition and an effect. A precondition is a conjunction of
positive literals; an effect is a conjunction of literals. An action is an instanti-
ated operator. It can be applied if the precondition is true in the state before
the action is executed. The state changes that occur due to the application
are represented in the effect: positive literals are asserted to be true, negative
literals are asserted to be false.

It has been shown that strips is insufficiently expressive for many real-
world problems [157] and many language variants have been developed to
overcome its limitations. The “Planning Domain Definition Language” (pddl)
provides a syntax that attempts to standardize planning languages [101, 42].
It is mainly used to benchmark and compare different planning approaches,
e. g., at the AI Planning Systems Competition [100].

28 2 Relevant Technologies

Planning Algorithm

Different planning algorithms exist. The standard approaches are forward
state-space search and backward state-space search. Forward state-based plan-
ning (or progression planning) starts in the initial state and applies actions
until the goal state is reached. Because naive forward planning does consider
all actions applicable in each state, the search space quickly becomes too large
to handle. In contrast, backward state-based planning (also called regression
planning) only considers those actions that contribute to achieving unsatisfied
literals, i. e., conditions that need be true in the goal state, but are not yet.
One of those available operators is selected that has a literal on the effect list
that matches an unsatisfied literal. The variables of the operator are instan-
tiated, and the new goal state is calculated by deleting all positive effects of
the operator and adding all preconditions of the operator (unless they already
appear in the goal state).

These basic algorithms are insufficient for real-world problems. As a con-
sequence, a number of different algorithms have been developed (see [157] for
an introduction to planning). In the following, I will describe an approach
that makes use of the hierarchical problem solving knowledge often available
in a domain to guide the search through to search space.

2.6.2 Introduction to Hierarchical Task Network Planning

In Hierarchical Task Network planning (HTN planning), the goal of the plan-
ner is to achieve a partially or fully ordered list of activities. In HTN terminol-
ogy, these activities are called tasks. For now, these tasks share only the name
with instructional tasks as defined in Section 2.5; conceptually they are dif-
ferent. Only later in this volume, in Section 4.4, I will show how instructional
tasks can be mapped onto HTN tasks. In the following sections, whenever I
use the term “task”, it means “HTN task”.

An HTN planner solves a list of tasks (task network) by decomposing these
top tasks into smaller and smaller subtasks until primitive tasks are reached
that can be carried out directly. Sacerdoti [158] and Tate [177] developed the
basic idea in the mid-70s. The development of the formal underpinnings came
much later, in the mid-90s by Erol et al. [40]. HTN planning research has
been much more application-oriented than most other AI-planning research,
and most HTN planning systems have been used in one or more application
domains [210, 29, 126].

HTN planning is a very efficient planning technique, as illustrated by the
HTN planner shop2 that received one of the top four awards in the 2002
International Planning Competition. HTN planning is efficient because the
task decomposition encodes domain-specific control knowledge that prunes
the search space effectively. The goal is represented by a task network, and
instead of considering all operators applicable in the current state, the planner
only considers those that occur in the decomposed goal task [122].

2.6 Hierarchical Task Network Planning 29

2.6.3 SHOP2 and JSHOP2

The planners shop (Simple Hierarchical Ordered Planner [123]), shop2 [124],
and jshop2 [63] were developed at the Automated Planning Group, University
of Maryland. Unlike most other HTN planners, they decompose tasks into
subtasks in the order in which the tasks will be achieved in the resulting
plan. This search-control strategy is called ordered task decomposition. As a
result of this strategy, the current state is known in each step of the planning
process. This allows incorporating sophisticated reasoning capabilities into
the planning algorithm, such as calling external functions, which can access
predefined code in order to perform complex calculations or access external
information sources. Nau et al. [124] show that the planning procedure of
shop2 (and jshop2) is Turing-complete, and sound and complete over a large
class of planning problems.

jshop2 is the Java version of shop2. It is a compiler that takes an HTN
domain description as input and compiles it into a set of domain-specific Java
classes that can later be used to solve planning problems in that domain.
These classes implement a domain-specific instance of a domain-independent
planner. The fact that jshop2 is a compiler rather than an interpreter helps
optimizing the domain-dependent code it produces. Ilghami and Nau [63] pro-
vide evaluation results that show that the compilation technique can increase
planning efficiency significantly.

2.6.4 JSHOP2 Formalism

In this section, I provide a detailed description of jshop2, where I will restrict
myself to the features actually used by Paigos. The jshop2 manual [62]
describes the complete set of features; and this section owes a lot to that
manual.

The inputs to jshop2 are a planning domain and a planning problem.
Planning domains are composed of operators, methods, axioms, and external
functions :

• planning operators describe various kinds of actions that the plan executor
can perform directly. These are similar to classical planning operators such
as the ones in pddl, with preconditions, add and delete lists. Each operator
instance can carry out a primitive task associated with it. These operator
instances change the world state upon their execution according to their
add and delete lists.

• Methods describe various possible ways of decomposing compound tasks
into eventually primitive subtasks. These are the “standard operating pro-
cedures” that one would normally use to perform tasks in the domain. Each
method may have a set of preconditions that must be satisfied in order to
be applicable.

• Axioms are Horn-clause-like statements for inferring conditions that are
not mentioned explicitly in world states.

30 2 Relevant Technologies

• External functions are code calls to external agents that the planner can
make while evaluating a condition or calculating a binding during planning.
As we will see in Chapter 4, they are used extensively in Paigos.

Planning problems are composed of an initial state that consists of logical
atoms, and tasks lists (high-level actions to perform). The components of a
planning domain (operators, methods, and axioms) all involve logical expres-
sions, which are logical atoms connected through operators described below.
Logical atoms involve a predicate symbol plus a list of terms. Task lists in
planning problems are composed of task atoms. The elements of domains and
problems are defined by various symbols.

Planning happens by applying methods to compound tasks that decom-
pose them into subtasks until a level of primitive tasks is reached, and by
applying operators to primitive tasks to produce actions. If this is done in
such a way that all of the constraints are satisfied, then the planner has found
a solution plan; otherwise the planner will need to backtrack and try other
methods and actions.

This section describes each of the above structures. Following [62], the
description is organized in a bottom-up manner because the specification of
higher-level structures is dependent on the specification of lower-level struc-
tures. For example, methods are defined after logical expressions because
methods contain logical expressions.

2.6.4.1 Symbol

The vocabulary of the language for the jshop2 planner is a tuple 〈V, C, P, F, T,
N, M〉, where V is an infinite set of variable symbols, C is an finite set of
constant symbols, P is a finite set of predicate symbols, F is a finite set of
function symbols, T is a finite set of compound task symbols, N is a finite set
of primitive task symbols, and M is an infinite set of name symbols. All these
sets are mutually distinct. To distinguish among these symbols, I will use the
following conventions:

• variable symbols begin with a question mark (such as ?x);
• primitive task symbols begin with an exclamation point (e. g., !unstack);
• constant symbols, predicate symbols, function symbols, and compound

task symbols begin with a letter;
• square brackets indicate optional parameters or keywords;
• expressions in italic denote any arbitrary term. They have no semantic

meaning in jshop2 but are used for convenience in examples.

Any of the structures defined in the remaining sections are said to be
ground if they contain no variable symbols.

2.6 Hierarchical Task Network Planning 31

2.6.4.2 Term

A term is any one of the following:

• a variable symbol;
• a constant symbol;
• a name symbol;
• a number;
• a list term;
• a call term.

List Term

A list term is a term of the form

(t1 t2 ... tn [. l])

where each ti is a term. This specifies that t1, t2, . . . , and tn are the items
of a list. If the final, optional element is included, the item l should evaluate
to a list; the “.” indicates that all items in l are included in the list after t1
through tn

Call Term

A call term is an expression of the form

(call f t1 t2 ... tn)

where f is a function symbol and each ti is a term. A call term tells jshop2
that f is an attached procedure, i. e., that whenever jshop2 needs to evaluate a
structure where a call term appears, jshop2 should replace the call term with
the result of applying the external function f on the arguments t1, t2, . . . ,
and tn. In jshop2, any Java function can be attached as a procedure, as long
as it returns a term as a result.

Example 2.5. The following call term has the value 6: (call + (call + 1 2)
3).

2.6.4.3 Logical Atom

A logical atom has the form

(p t1 t2 ... tn)

where p is a predicate symbol and each ti is a term.

Example 2.6. Later in this volume, I will describe the fact that a resource r
was inserted in course using the logical atom (inserted r).

32 2 Relevant Technologies

2.6.4.4 Logical Expression

A logical expression is a logical atom or any of the following complex expres-
sions: conjunctions, disjunctions, negations, implications, assignments, or call
expressions.

Conjunction

A conjunction has the form

([and] L1 L2 ... Ln)

where each Li is a logical expression.

Disjunction

A disjunction has the form

(or L1 L2 ... Ln)

where each Li is a logical expression.

Negation

A negation is an expression of the form

(not L)

where L is a logical expression.

Implication

A implication has the form

(imply Y Z)

where each Y and Z are logical expressions, and Y has to be ground. An im-
plication is interpreted as (or not(Y) Z).

Assignment

An assignment expression has the form

(assign v t)

where v is a variable symbol and t is a term. An assignment expression binds
the value of t to the variable symbol v.

Call Expression

A call expression has the same form as a call term but is interpreted as false
if it evaluates to an empty list and as true otherwise.

2.6 Hierarchical Task Network Planning 33

2.6.4.5 Logical Precondition

A logical precondition is either a logical expression or a first satisfier precon-
dition.

First Satisfier Precondition

A first satisfier precondition has the form

(:first L)

where L is a logical expression. Such a precondition causes jshop2 to consider
only the first binding that satisfies L (similar to the cut operator in Prolog).
Alternative binding will not be considered, even if the first binding does not
lead to a valid plan.

2.6.4.6 Axiom

An axiom in a expression of the form

(:- a [name1] L1 [name2] L2 ... [namen] Ln)

where the axiom’s head is the logical atom a, and its tail is the list [name1]
L1 [name2] L2 ... [namen] Ln, and each Li is a logical precondition and
each namei is a symbol called the name of Li. The names serve debugging
purposes only, and have no semantic meaning. The intended meaning of an
axiom is that a is true if L1 is true, or if L1 is false, but L2 is true, . . . , or if
all of L1, L2, . . . , Ln-1 are false but Ln is true.

2.6.4.7 Task Atom

A task atom is an expression of the form

(s t1 t2 ... tn)

where s is a task symbol and the arguments t1 t2 . . . tn are terms. The task
atom is primitive if s is a primitive task symbol, and it is compound if s is a
compound task symbol.

Example 2.7. Lather in this volume, I will use the primitive task (!insert r)
to represent the goal that a resource r should be inserted into a course. The
compound task (rehearse r) represents that a course should be generated
that supports the learner is rehearsing r.

2.6.4.8 Task List

A task list is either a task atom or an expression of the form

([tasklist1 tasklist2 ... tasklistn])

where tasklist1 tasklist2 . . . tasklistn are task lists themselves. n can
be zero, resulting in an empty task list.

34 2 Relevant Technologies

2.6.4.9 Operator

An operator has the form

(:operator h P D A)

where

• h (the operator’s head) is a primitive task atom;
• P (the operator’s precondition) is a logical expression;
• D (the operator’s delete list) is a list that consists of logical atoms;
• A (the operator’s add list) is a list that consists of logical atoms.

A planning operator accomplishes a primitive task: the task symbol is
the name of the planning operator to use, and the task’s arguments are the
parameters for the operator. An action is defined as being an instantiated
operator.

jshop2 allows defining internal operators. An internal operator is only
used for supporting purposes during the planning process (e. g., to perform
calculations which might become useful later during planning) and does not
correspond to actions performed in the plan. Internal operators are specially
marked (they begin with two exclamation marks), yet they have the same
syntax and semantics as other operators. Internal operators serve the purpose
that a client that uses plans generated by jshop2 can distinguish between
operators that are internal to the planning process and those that involve
action.

jshop2 requires that an operator is designed such that each variable sym-
bol in the add list and delete list can always be bound to a single value when
the operator is invoked. Variable symbols can be bound in the head of the
operator (by the method that invokes the associated primitive task) or in the
precondition of the operator.

2.6.4.10 Method

A method is a list of the form

(:method h [name1] L1 T1 [name2] L2 T2 ...[namen] Ln Tn)

where

• h (the method’s head) is a compound task atom;
• each Li (a precondition for the method) is a logical precondition;
• each Ti (a tail or the subtasks of the method) is a task list;
• each namei is the name for the succeeding pair Li Ti.

A method specifies that the task in the method’s head can be performed
by performing all of the tasks in one of the method’s tails, when that tail’s
precondition is satisfied. Note that the preconditions are considered in the
given order, and a later precondition is considered only if all of the earlier
preconditions can not be satisfied. If there are multiple methods for a given
task available at some point in time, then the methods are considered in the
order given in the domain definition.

2.6 Hierarchical Task Network Planning 35

2.6.4.11 Planning Domain

A planning domain has the form

(defdomain domain-name (d1 d2 ...dn))

where domain-name is a symbol and each item di is either an operator, a
method, or an axiom.

2.6.4.12 Planning Problem

A planning problem has the form

(defproblem problem-name domain-name
([a1,1 a1,2 ... a1,n]) T1 ...
([am,1 am,2 ... am,o]) Tm)

where problem-name and domain-name are symbols, each ai,j is a ground
logical atom, and each Ti is a task list. This form defines m planning problems
in domain domain-name each of which may be solved by addressing the tasks
in Ti with the initial state defined by the atoms ai,1 through ai,j.

2.6.4.13 Plan

While the above sections described the input to jshop2, this section describes
the output that jshop2 produces. A plan is a list of the form

(h1 h2 ... hn)

where each hi is the head of a ground operator instance oi (an action). If p
= (h1 h2 ... hn) is a plan, oi the operator associated with hi, and S is a
state, then p(S) is the state produced by starting with S and executing o1,
o2, . . . on in the given order.

2.6.4.14 Example of an Operator and a Method

Figure 2.4 presents an example of an HTN operator in jshop2 syntax (this
and the following example are taken from [125]). It uses the conventions de-
fined above: the semicolon indicates the start of a comment, terms starting
with a question mark denote variables, primitive HTN tasks are marked with
an exclamation mark, and a double exclamation mark denotes a task only
relevant for internal purposes.

The operator in the example is applicable given a) that the primitive
task (!board ?person ?plane) can be matched against a not yet achieved
primitive task (i. e., that there is a person that should board a plane) and b)
that the instantiated preconditions in lines 3–4 hold (i. e., atoms exists in the
world state that can be matched with the preconditions whose variables are
replaced by the value they were bound to in the operator’s task). In case an

36 2 Relevant Technologies

1 (:operator (!board ?person ?plane) ;; the primitive HTN task

2 (;; the precondition

3 (at ?person ?place)

4 (at ?plane ?place)

5)

6 (;; the delete list

7 (at ?person ?place)

8)

9 (;; the add list

10 (in ?person ?plane)

11)

12)

Fig. 2.4. An HTN operator

operator is applied all atoms contained in the delete list are removed and all
atoms contained in the add list are added to the world state respectively. In
the example, the person would no longer be at the original place but in the
plane.

(:method (transport-person ?person ?destination) ;; the HTN task

;; the first preconditions

(

(at ?person ?current-position)

(same ?current-position ?destination)

)

;; the corresponding subtask

()

;; the next preconditions

(

(at ?person ?current-position)

(plane ?p)

)

;; the corresponding subtask

((transport-with-plane ?person ?p ?destination)))

Fig. 2.5. An HTN method

Figure 2.5 contains an example of a HTN method. The method is applica-
ble in case an open HTN task exists that matches with (transport-person
?person ?destination) and any of the precondition lists holds. The precon-
ditions are tried in the given order. If one of them matches, the method’s head
is replaced by the corresponding subtasks.

3

Descriptive and Prescriptive Learning Theories

Learning theories describe how people learn, often by reference to a partic-
ular model of human cognition or development. Depending on the learning
theory, different requirements arise regarding the learning process, e. g., how
to structure it, what questions to ask the learner, etc.

Learning theories can be divided into descriptive and prescriptive theo-
ries [162, page 137]. Descriptive learning theories make statements about how
learning occurs and devise models that can be used to explain and predict
learning results. When describing different descriptive theories of learning
below, I will follow the common categorization that distinguishes between
behaviorist, cognitive, and constructivist learning theories [151, 162].

Prescriptive learning theories are concerned with guidelines that describe
what to do in order to achieve specific outcomes. They are often based on
descriptive theories; sometimes they are derived from experience. Instructional
design is the umbrella which assembles prescriptive theories. I will describe
instructional design in Section 3.4.

3.1 Behaviorism

Behaviorism explains human behavior based on observable stimulus-response
associations, without referring to mental processes. Behavioristic theories were
developed in the beginning of the 19th century as a reaction to the then
predominantly used psychological methods of introspection and subjectiv-
ity, which behavioral theorists such as John B. Watson qualified as non-
scientific [206].

Learning is viewed as the forging of the desired condition-action pairs. Pos-
itive reactions have to be reinforced, undesired ones avoided. Behaviorists such
as Burrhus F. Skinner applied their research results to technology-supported
learning. Skinner [169] provided principles for programmed instruction, which
is characterized by leading the learner through the learning material in gradual
steps, providing immediate feedback, and continuous positive reinforcement.

C. Ullrich: Courseware Generation for Web-Based Learning, LNAI 5260, pp. 37–42, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

38 3 Descriptive and Prescriptive Learning Theories

In the sixties, the US government, especially the Department of Defense
invested considerable amounts of money in the development of programmed
instruction, with the hope of reducing the costs for civil and military train-
ing.1 One prominent system developed at that time was Plato whose trade-
mark is still used today.2 Yet, evaluation results of programmed instruction
were mixed, and the authoring costs were extremely high, so that educational
systems based on pure behavioristic principles became rare.

3.2 Cognitivism

Cognitive psychology makes mental processes the primary object of study. Ex-
periments involving mental operations are designed such that they allow con-
clusions on the cognitive structures used in the mind during problem solving.
These experiments are reproducible, in contrast to the former introspective
and subjective experiments.

Learning is viewed as transferring the cognitive structures in long-term
memory and being able to use them, when necessary. Learning takes place
through organizing, storing and linking the new structures to old knowledge.

Based on cognitive theories, one can devise principles for instruction. In
the 1960ties, Gagné [44] published his principles of instruction, an effort to
collect the existing theories and to put them into a common framework. He
distinguishes nine cognitive processes and assigns specific instructional events
to the objectives, e. g., the process “retrieval”, with the instructional event
“stimulating recall of prior learning”.

In technology-supported learning, the research in cognitive psychology led
to the new field of Intelligent Tutoring Systems (ITS). ITS were designed to
support the learner during problem solving in his creation of the appropriate
cognitive structures. One of the most prominent ITS, the Pact-tutors were
originally based on Anderson’s ACT-* theory [3, 4, 5].

3.3 Constructivism

Constructivism is based on the premise that knowledge can not be transmitted
but has to be constructed by the individual. Therefore, learning is an active
process of integrating information with pre-existing knowledge.

1 The ratio between military and civilian investment in education is astonishing:
“within government agencies, the military spends seven dollars for every civilian
dollar spent on educational technology research. Each year, for example, the mil-
itary spends as much on educational technology research and development as the
Department . . . of Education has spent in a quarter century” [132].

2 http://www.plato.com [145].

http://www.plato.com

3.4 Instructional Design 39

Cognitively oriented constructivist theories such as discovery learning
(e. g., [17]) and microworlds [140] emphasize exploration and discovery. So-
cially oriented constructivist theories, such as social constructivism [201] and
cognitive apprenticeships [16] stress the collaborative efforts of groups of learn-
ers as sources of learning.

In constructivism, the control over the learning process shifts from the
teacher to student. The learner plays the active role in the learning process.
He is regarded to be an information-processing individual; the external stim-
ulus is processed actively and independently. The kind and quality of the
processing varies between the learners, depending on the account of different
experiences, previous knowledge and levels of development of the learners.
Learning takes place in context and in collaboration and provides opportu-
nities to solve realistic and meaningful problems. In contrast, the teachers
focus mainly on preparatory activities and provide support in case assistance
is needed. Consequently, the teacher is an initiator of and an adviser in the
learning process.

Papert’s Turtle microworld in logo [140] is one of the best known exam-
ples of technology-supported learning based on constructivist principles.

The last years have seen an increasing research in and appliance of con-
structivist approaches. Pure constructivist approaches, however, are not un-
challenged. Authors such as Mantyka [94] point out that it is not possible
to completely abandon instructions and drill from lessons. Hence, the moder-
ate constructivist theory has been developed as a pragmatic approach which
integrates instructions into a theory that has a clear constructivist tendency.

3.4 Instructional Design

According to Reigeluth [150], instructional design describes how to design
teaching materials that are effective (how well a topic is learned), efficient
(ratio of effectivity and the time required for learning), and appealing to the
learner. Instructional design being a prescriptive learning theory is orthogonal
to descriptive theories. The work by Gagné [44] counts as one of the first
examples of instructional design.

Usage of instructional design is wide-spread. However, it is not unques-
tioned. Some authors [211, 150, 115] claim that instructional design can en-
compass cognitive and even constructivist elements. Others, e. g., Schulmeis-
ter, classify instructional design as behavioristic ([162], pages 142–166). There,
Schulmeister documents an intensive debate in the journal “Educational Tech-
nology” between supporters of instructional design and constructivism. He
provides the following quote by Jones, Li, and Merrill [69], which convinc-
ingly illustrates the principal differences between the traditional instructional
design and the constructivist approach:

Instruction, in large measure, communicates accepted meaning. The
developer of instruction explicitly desires that the learner adopt the

40 3 Descriptive and Prescriptive Learning Theories

meaning intended by the developer, and not reach a separate and per-
sonal interpretation of that meaning. . . . [M]ost instruction . . . con-
cerns transferring, as effectively and efficiently as possible, determined
interpretations.

No matter what, the debate between the protagonists of instructional de-
sign and constructivist is not subject of this volume. However, what this
debate illustrates is that different views exist on the “best” way of teaching.
Therefore, Paigos was designed to be educational neutral, that is, as such, it
is independent of any learning theory, but can be instantiated to the required
learning theory at hand. In Chapter 5, I will describe course generation based
on moderate constructivist as well as on instructional design principles.

Throughout this volume, I use the term “instruction” in a manner that
reflects this educational neutrality. Following the Random House Unabridged
Dictionary [148], in this work, instruction denotes “the act or practice of
instructing or teaching”.

3.5 Competency-Based Learning

3.5.1 Mathematical Competencies

In the late nineties, the OECD (Organisation for Economic Co-operation and
Development) started the PISA studies (Programme for International Student
Assessment), which “aim to measure how far students approaching the end of
compulsory education have acquired some of the knowledge and skills essential
for full participation in the knowledge society” [139].

From early on, PISA considered mathematics as one of the central subjects
to be tested. PISA is based on the notion of competency-based learning [138]:
learning mathematics should not only aim at solving a problem but also at
thinking mathematically and arguing about the correctness or incorrectness
of the problem solving steps and involved methods, to perform simple and
complex computations, etc.

The competency approach is based on the literacy concept. The general
assumption is that different competencies together build up mathematical
literacy. One can only become mathematically literate by sufficiently high
achievement over the complete set of competencies.

The competency approach can be considered as a way to support the
presentation of concepts from different perspectives by giving varying tasks
to the students. The tasks differ in the required mathematical activities, the
competencies.

Based on the PISA studies and related work by the (American) National
Council of Teachers of Mathematics, the European FP6 project LeActive-

Math investigated employing mathematical competencies for technology-
supported learning.

3.5 Competency-Based Learning 41

The competencies in LeActiveMath describe high level learning objec-
tives and can be characterized as following (see also [131] and [81]):

Think mathematically. Includes the ability to
• pose questions that are characteristic for mathematics (e. g., “Are

there . . . ?”, “How does . . . change?”, “Are there exceptions?”)
• understand and handle the scope and limitations of a given concept
• make assumptions (e.g. extend the scope by changing conditions, gen-

eralize or specify, with reasons)
• distinguish between different kinds of mathematical statements (e.g.

conditional assertions, propositional logic)
Argue mathematically. Includes the ability to

• develop and assess chains of arguments (explanations, reasons, proofs)
• know what a mathematical proof is and what not
• describe solutions and give reasons for their correctness or incorrect-

ness
• uncover the basic ideas in a given line of arguments
• understand reasoning and proof as fundamental aspects of mathemat-

ics
Solve problems mathematically. Includes the ability to

• identify, pose and specify problems
• self-constitute problems
• monitor and reflect on the process of problem solving
• endue strategies / heuristics
• solve different kinds of problems (with various contexts outside of

mathematics, open-ended exercises)
Model mathematically. Includes the ability to

• translate special areas and contents into mathematical terms
• work in the model
• interpret and verify the results in the situational context
• point out the difference between the situation and the model

Use mathematical representations. Includes the ability to
• understand and utilize (decode, interpret, distinguish between) differ-

ent sorts of representation (e.g., diagrams and tables) of mathematical
objects, phenomena, and situations

• find relations between different kinds of representation
• choose the appropriate representation for the special purpose

Deal with symbolic and formal elements of mathematics. Includes to
• use parameters, terms, equations and functions to model and interpret
• translate from symbolic and formal language into natural language

and the other way round
• decode and interpret symbolic and formal mathematical language and

understand its relations to natural language
Communicate. Includes the ability to

• explain solutions

42 3 Descriptive and Prescriptive Learning Theories

• use a special terminology,
• work in groups, including to explain at the adequate level
• understand and verify mathematical statements of others

Use tools and aids. Includes the ability to
• know about the existence of various tools and aids for mathematical

activities, and their range and limitations;
• to reflectively use such tools and aids

3.5.2 Competency Levels

Competency levels of exercises are intervals of difficulty labeling. They serve
the purpose to measure to what extent a specific competency has to be de-
veloped by the student in order to solve the particular exercise with a certain
probability. The competency levels are characterized as follows [81]:

Level I: Computation at an elementary level. To achieve this level, students
have to apply arithmetic knowledge (factual knowledge, schematic appli-
cable procedures). This level comprises knowledge learned by heart that is
easy to recall and can be applied directly in a standard situation without
requiring conceptual modeling.

Level II: Simple conceptual solutions. This competency level involves simple
forms of conceptual modeling, solutions that require only a limited amount
of problem solving steps, and factual knowledge. In exercises on this level,
either the task is to select the correct solution from several alternatives or
the student is provided with structural aids and graphical hints to develop
her own solution.

Level III: Challenging multi-step-solutions. This competency level requires to
perform more extensive operations and to solve a problem in several inter-
mediate steps. Additionally, it includes dealing with open-ended modeling
tasks that can be solved in various ways, but that require to find a solu-
tion of their own. High level modeling on inner-mathematical connections
can also be required.

Level IV: Complex processing (modeling, argumentation). Students who suc-
cessfully solve exercises of this competency level are able to work on open-
ended tasks, choose adequate models and construct models themselves
where necessary. Conceptual modeling at this highest level often includes
mathematical justification and proof as well as reflection on the modeling
process itself.

The scenarios described in this work (Section 5) are based on the notion
of competencies and competency levels.

Part II

PAIGOS

4

General Principles

In this chapter, I will identify and describe general principles that apply to
course generation as formalized in Paigos, independent of both the underlying
learning theory and the learning goals the course is generated for.

The chapter starts with metadata. In Section 4.1, I show that existing
learning object metadata standards fail to describe educational resources suf-
ficiently precise for their automatic integration into learning processes by in-
telligent components. I then describe an ontology of instructional objects that
contains specifically this previously missing information. The ontology facil-
itates the process of making repositories available to the course generator.
On the one hand, this process helps to assemble a course from resources of
different repositories. On the other hand, the course generator can provide
its functionalities as a service to other systems that plug-in their repositories.
The mediator architecture that was developed for this purpose is described in
Section 4.2. A further question concerns the learning goals that Paigos pro-
cesses. In traditional course generation systems, learning goals consist only of
educational resources, which represent the target content that is to be learned.
Such an approach ignores that different purposes require different course of ac-
tions. For instance, a course for preparing an exam should consist of different
educational resources from a course that provides a guided tour. Section 4.3
tackles this question and provides a general representation of learning goals.
The subsequent sections form the main part of this chapter. They explain
how course generation knowledge can be formalized as an HTN planning do-
main. This chapter describes general axioms, operators and methods used in
that domain (Chapter 5 describes how these general techniques are used to
generate course for different learning goals in different learning theories). The
remaining sections of this chapter cover additional features that arise from
the need of the application and are possible in Paigos: Section 4.8 describes
how to generate a complete course and still allow for adaptive selection of re-
sources when needed. Section 4.9 focuses on the problem that automatically
generated sequences of educational resources can lack coherence and expla-
nations about the learning goals, and describes how to use the information

C. Ullrich: Courseware Generation for Web-Based Learning, LNAI 5260, pp. 45–109, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

46 4 General Principles

about the learning goals available during course generation to generate such
information.

4.1 An Ontology of Instructional Objects

According to Gruber [53] an “ontology is an explicit specification of a concep-
tualization”. He continues: “when the knowledge of a domain is represented
in a declarative formalism, the set of objects that can be represented is called
the universe of discourse. This set of objects, and the describable relationships
among them, are reflected in the representational vocabulary with which a
knowledge-based program represents knowledge.” The set of objects is also
called concepts or classes.

Mizoguchi and Bourdeau [117] stress that a first step towards intelligent
services is to define the terms used in the application domain. For educational
services such as course generation the terms need to describe the educational
resources as well as the learning goals.1 This section describes an ontology of
instructional objects (oio) that was developed in order to characterize educa-
tional resources. Although originally developed for mathematical resources, it
can also be used for describing other subject domains, as long as the domain
can be structured in distinct elements with relations (e. g., physics, future
work will investigate applicability to domains such as language learning). The
oio describes resources sufficiently precise for a pedagogically complex func-
tionality such as course generation.

Seminal work on using ontologies for e-learning was done in the ISIR lab,
headed by Mizoguchi: Mizoguchi and Bourdeau [117] lay out how ontologies
can help to overcome problems in artificial intelligence in education; Aroyo
and Mizoguchi [8] and Hayashi et al. [55] describe how an assistant layer
uses an ontology to support the complete authoring process, for instance
by giving hints on the course structure (see also the description of related
work in Chapter 8. The following ontology has a more specific scope; instead
of describing the authoring process during which the educational resources
are developed, the ontology is focused on describing the resources. It thus
defines a set of types (or classes) that is used to annotate educational re-
sources.2

1 Equally important is information about the learner and her current learning con-
text. However, this is outside the scope of this volume. We will assume that there
exists a component that contains the necessary information about the learner (a
learner model).

2 Part of the work described in this section was published in the following publica-
tions: [184, 185, 113, 186, 110].

4.1 An Ontology of Instructional Objects 47

4.1.1 Motivation

The requirements that influenced the design of the ontology are the following
(partly based on [86]):

Domain independence. The types represented in the ontology should be in-
dependent of the domain that is being taught as long as the domain can
be structured in distinct entities connected by relations. Ideally, the types
should characterize educational resources about mathematics as well as
physics or chemistry.

Pedagogical flexibility. The types should be independent of the learning the-
ory underlying the educational resources, i. e., they should describe con-
structivist as well as more traditional didactic approaches.

Completeness. The types should cover the range of educational resources as
much as possible.

Compatibility. Mapping the ontology onto existing standards and learning
object metadata should be as easy as possible.

Applicability. Users should be able to understand and apply the ontology
using terms that reflect their needs. lom, for instance, is notorious for
putting a heavy load on content developers due to its vast amount of
properties. [39].

Machine processability. The types (together with additional metadata) should
enable intelligent applications to find and reuse learning objects without
human guidance or intervention.

In order to design an ontology that complies with these goals as much as
possible, I analyzed sources ranging from text classification [92], over instruc-
tional design [e. g., 149, 150, 45, 178, 34, 209, 102] to knowledge representa-
tions of structured texts [22, 204, 65] and representations used for technology-
supported learning [e. g., 197, 172, 141, 107, 90, 25, 48]. Whenever applicable,
these sources were taken into account in the ontology.

A concrete example illustrates best the entities described by the ontology.
Figure 4.1 includes several learning resources (taken from the textbook [10]),
clearly divided into several distinct paragraphs. Each paragraph serves a par-
ticular instructional role. The first two paragraphs introduce two concepts (a
definition and a theorem), the third provides examples of applications of a
concept, and the last one offers activities to apply the concept. The example
is taken from a traditional textbook in order to illustrate that the ontology
applies to other resources than digital ones.

Currently, the most established standard for describing educational re-
sources is lom. It is a common and exhaustive, yet easily extensible descrip-
tion of learning objects, which allows describing, finding, and using educa-
tional resources across any learning environment. lom’s educational cate-
gories partially describe resources from an pedagogical perspective, in par-
ticular the slot learningResourceType. Its possible values are Exercise,
Simulation, Questionnaire, Diagram, Figure, Graph, Index, Slide, Table,

48 4 General Principles

Fig. 4.1. A page that contains several types of instructional objects (from the
mathematics textbook [10], marginally modified)

4.1 An Ontology of Instructional Objects 49

NarrativeText, Exam, Experiment, ProblemStatement, and SelfAssesment.
The problem with these values is that they mix pedagogical and technical or
presentation information: while Graph, Slide and Table describe the format
of a resource, other values such as Exercise, Simulation and Experiment
cover the instructional type. They represent different dimensions, hence need
to be separated for an improved decision-making. Furthermore, several in-
structional objects are not covered by lom (e. g., definition, example). As
a result, lom fails to represent the instructional type sufficiently precise to
allow for automatic usage of educational resources, in particular if the us-
age involves complex pedagogical knowledge necessary for effective learning
support. For instance, lom has no easy way to determine to what extent a
resource annotated with Graph can be used as an example. Related metadata
standards, e. g., GEM [46], exhibit similar problems.

Other relevant e-learning standards in this context are ims ld and ims

Question and Test Interoperability (ims qti [50]). ims ld describes ordered
activities in learning and the roles of the involved parties. It does not represent
single learning resources and their instructional functions. ims qti specifies
a representation of exercises which encodes common exercise types, such as
multiple choice, image hot-spot, and fill-in-blank. It specifies the functionality
of an exercise rather than its pedagogical purpose.

Since no existing standard could fulfill the above requirements, I designed
an ontology of instructional objects (oio) that describes learning resources
from an instructional perspective. Note that each of the classes of the ontology
stands for a particular instructional role an educational resource can play –
they do not describe the content taught by the educational resources, e. g.,
concepts in mathematics and their relationships.

4.1.2 Description of the Ontology

An overview of the oio is shown in Figure 4.2. In the following, I will describe
the classes and relations in detail.3

Instructional Object

The root class of the ontology is instructionalObject. At this class, several
properties are defined that are used in all classes of the ontology. They in-
clude Dublin Core Metadata for administrative data, an unique identifier, and
some values adopted from lom such as difficulty and learningContext
(the educational context of the typical target audience). Dependencies be-
tween instructional objects are represented using the relation requires. In
the current version of Paigos it proved to be not necessary to distinguish
between educational and content-based dependencies, as done, e. g., in the
learning environment ActiveMath [109]. The relation isVariantOf is used
3 The ontology is publicly available at http://semanticweb.dfki.de/Wiki.jsp?page=

Ontologies.

http://semanticweb.dfki.de/Wiki.jsp?page=Ontologies
http://semanticweb.dfki.de/Wiki.jsp?page=Ontologies

50 4 General Principles

Procedure

Policy

InstructionalObject

Fundamental

Law

Definition

Fact

Auxiliary Interactivity

Evidence

Illustration

Example

CounterExample

Demonstration

Proof

RealWorldProblem

Invitation

Exploration

Exercise

Conclusion

Remark

Introduction

LawOfNature

Theorem

Process

Explanation

isA: isFor:
isVariantOf:requires:

Fig. 4.2. Overview of the Ontology of Instructional Objects

to indicate that an instructional object is a variant of another one, e. g., that
an exercise e is a simpler version of an exercise f . In the current version of
Paigos, handling variants of fundamentals is limited to the learning context,
i. e., all definitions for the same learning context are assumed to be different.
This is due to the way how fundamentals are processed in the learning environ-
ment ActiveMath in which Paigos was implemented. It poses no principal
difficulties to extend Paigos to take this kind of variants into account.

Central to the ontology is the distinction between the classes fundamental
and auxiliary. The class fundamental subsumes instructional objects that
describe the central pieces of domain knowledge (concepts). Auxiliary el-
ements include instructional objects which contain additional information
about the fundamentals as well as training and learning experience.

Fundamental

More specifically, an educational resource of type fundamental conveys the
central pieces of information about a domain that the learner should learn dur-

4.1 An Ontology of Instructional Objects 51

ing the learning process. Pure fundamentals are seldom found in educational
resources. Most of the time, they come in the form of one of their special-
izations. Albeit fundamentals are not necessarily instruction-specific because
they cover types of knowledge in general, they are included in the ontology
because they are necessary for instruction: educational resources often have
the instructional function of presenting a fundamental.

Fact

An educational resource of type fact contains information based on real oc-
currences; it describes an event or something that holds without being a gen-
eral rule.

Definition

A definition states the meaning of, e. g., a word, term, expression, phrase,
symbol or class. In addition, it can describe the conditions or circumstances
that an entity must fulfill in order to count as an instance of a class.

Law, Law of Nature, Theorem

A law describes a general principle between phenomena or expressions that
has been proven to hold or is based on consistent experience. Two sub-classes
allow a more precise characterization: lawOfNature describes a scientific gen-
eralization based on observation; theorem describes an idea that has been
demonstrated to be true. In mathematics, it describes a statement which can
be proven true on the basis of explicit assumptions.

Process, Policy, Procedure

Process and its subclasses describe a sequence of events. The deeper in the
class hierarchy, the more formal and specialized they become. An educational
resource of type process contains information on a flow of events that de-
scribes how something works and can involve several actors. A policy de-
scribes a fixed or predetermined policy or mode of action. One principal actor
can employ it as an informal direction for tasks or as a guideline. A procedure
consists of a specified sequence of steps or formal instructions to achieve an
end. It can be as formal as an algorithm or a proof planning method [104].

Auxiliary

An educational resource of type auxiliary contains information about fun-
damentals that, in theory, is not necessary for understanding the domain but
supports the learning process and often is crucial for it. They motivate the
learner and offer engaging and challenging learning opportunities. Every aux-
iliary object contains information about one or several fundamentals. The
identifiers of these fundamentals are enumerated in the property isFor.

52 4 General Principles

Interactivity

An interactivity requires the learner to give active feedback. It is more
general than an exercise as it does not necessarily have a defined goal that
the learner has to achieve. It is designed to develop or train a skill or ability
related to a fundamental. The subclasses of interactivity do not capture
technical aspects. In general, the way an interactivity is realized, for instance
as a multiple choice question, is independent of its instructional function. As
illustrated by [15] for the “taxonomy of educational objectives”, well-designed
multiple choice questions can address different educational objectives.

Exploration, Real World Problem, Invitation, Exercise

Using an educational resource of type exploration, the user can freely ex-
plore aspects of a fundamental without a specified goal or with a goal but
no predefined solution path. A realWorldProblem describes a situation from
the learner’s daily private or professional life that involves open questions
or problems. An invitation is a request to the learner to perform a meta-
cognitive activity, for instance by using a tool. An educational resource of type
exercise is an interactive object that requires the learner’s response/action.
The response can be evaluated (either automatically or manually) and an
success ratio can be assigned to it.

Illustration, Counter Example, Example

Educational resources of type illustration illustrate a fundamental or parts
of it. A counterExample is an instructional object that is exception to a
proposed general fundamental. An educational resource of the type example
positively illustrates the fundamental or parts of a fundamental.

Evidence, Demonstration, Proof

An evidence contains supporting claims made for a law or one of its sub-
classes, hence the isFor-property of an evidence has as range the class law.
A demonstration provides informal evidence that a law holds, e. g., experi-
ments in physics or chemistry. A proof contains formal evidence, i. e., a test
or a formal derivation of a law.

Explanation Conclusion, Introduction, Remark

An explanation contains additional information about a fundamental. It
elaborates certain aspects or points out important properties. Its sub-class
conclusion sums up the main points of a fundamental. An introduction
contains information that leads the way to a fundamental. A remark provides

4.1 An Ontology of Instructional Objects 53

additional, not strictly mandatory information about an aspect of a funda-
mental. It can contain interesting side information, or details about how the
fundamental is related to other fundamentals.

To summarize, this vocabulary was designed to describe educational resources
such that they can be automatically re-used for educational purposes such as
course generation.

The oio is used in the ActiveMath environment and has also been used
for a revised version of the ALOCoM ontology, an effort in the European
Network of Excellence ProLearn [82], in the e-learning platform e-aula [159],
and in the CampusContent project of the Distant University Hagen [87]. Sec-
tion 7.1.1 describes the evaluations performed with the ontology. The following
sections motivate why it makes sense to represent the instructional vocabulary
in an ontology and gives examples of applications of the oio in areas other
than course generation.

4.1.3 Why an Ontology?

Why is the information about the instructional types represented in an on-
tology rather than in a flat list as e. g., the learning-resource-type of lom or
in a taxonomy? The need for ontologies, that is, for a common understand-
ing of a domain that serves as a basis for communication between people or
systems, has been widely recognized (for a recent discussion see Heflin 57); in
the following, I will only summarize the most relevant points.

First of all, one needs to be able to express relations between educational
resources, i. e., that an exercise is for a definition. In addition, as we will see
in Section 4.2, the sub-class information contained in the ontology contains
valuable information when searching for educational resources.

Benefits of a formal description of the domain for human users include the
following. For technology-supported learning, the usage of such a shared in-
structional vocabulary offers advantages for teachers and learners. The explicit
instructional function represented in the ontology enables a more accurate
search for learning resources, which leads to better reuse and less duplication.
This enables a faster authoring of courses by teachers and tutors. Learners can
bridge knowledge gaps more efficiently by seeking instructionally appropriate
educational resources.

The pedagogically relevant information of the ontology might also bring
forth better pedagogical Web-services. It can increase the accuracy of a service
because at design time, a Web-service developer can foresee different function-
alities depending on the type of the resource. For most pedagogical services,
the information whether, say, a resource contains a definition or an example
will be of use, since it can react differently depending on the type. Similarly,
service composition is enhanced. For instance, a requester service can require
different actions from a provider depending on the instructional type of a
resource. Furthermore, interoperability is eased, and at least in theory, each

54 4 General Principles

system can provide its own specialized service and make use of the services
offered by others.

4.1.4 Applications of the Ontology

This section describes services other than course generation that might profit
from the ontology of instructional objects.

Learner modeling. A learner model stores personal preferences and informa-
tion about the learner’s mastery of domain concepts etc. The information
is regularly updated according to the learner’s interactions. A user model
server such as Personis [76] can use the information about the instructional
function of a learning resource for more precise updating. For instance,
reading an example should trigger a different updating than solving an
exercise.

Interactive exercises. In interactive exercises, feedback to the learner is cru-
cial. Using an ontology of instructional objects, an exercise system can
generate links to educational resources that additionally support the
learner in problem solving, e.g. (counter) examples or definition of the
important fundamentals.

Suggestion mechanism/Intelligent assistant. Feedback is not restricted to ex-
ercises. During the whole interaction of a learner with educational re-
sources, a suggestion mechanism [103] or intelligent assistant [161] can
analyze the student’s actions and provide hints of what to do next, which
content to read additionally, etc. An ontology of instructional objects can
be used by such tools to analyze actions and to make specific suggestions.
Section 6.2.5.1 describes how this was realized in the learning environment
ActiveMath.

Browsing services. Services that support the user’s navigation through the
hypertext-space (or, generally speaking, the space opened by the resources
and their relations) benefit when the instructional function of a learning
resource is made explicit. They can better classify and select the presented
objects. Systems that adaptively add links to content [21] can decide what
links to add and how to classify them appropriately. Similarly, tools that
generate concept maps can better adapt the maps to the intended learning
goal, both with respect to the selection and the graphical appearance of
the elements. A search tool that provides a view on the dependencies of the
domain elements can sort the element with respect to their instructional
type, which can be useful for authors and learners alike.

Authoring support. An ontology of instructional objects assists authors by
enabling enhanced search facilities and by describing an conceptual model
of the content structure. It equips authors with a set of concepts at an
adequate abstractness level to talk about instructional strategies, thus
allowing them to describe their teaching strategies at a level abstracted
from the concrete learning resources. Hence, instructional scenarios can be

4.2 A Mediator for Accessing Learning Object Repositories 55

exchanged and re-used. An ontology of instructional objects can addition-
ally support the author by providing an operational model in the sense
of Aroyo and Mizoguchi [8] and Hayashi et al. [55, 56] that gives hints to
the author, e. g., what instructional objects are missing in his course.

Data mining. In a joint work in the European Network of Excellence Kalei-
doscope, Merceron, Oliveira, Scholl, and Ullrich [113] investigated appli-
cations of the oio for data mining of learning paths. There, a data min-
ing tool extracts pedagogically relevant information from the paths of a
learner through the educational resources. The data-mining can include
the specific information about the instructional type of the learning re-
source. For instance, if a learner regularly skips introductions and directly
tries to solve exercises, a system can infer what Merceron and Yacef [112]
call a practical instead of a theoretical learning style.

In the following section, I describe how the oio is used for accessing edu-
cational resources stored in distinct repositories.

4.2 A Mediator for Accessing Learning Object
Repositories

The ontology described in the previous section allows specifying the instruc-
tional function of educational resources and contains necessary information
required for automatic, intelligent course generation. However, as a matter of
fact, most of the repositories available today use their own metadata schema
rather than the terms defined in the oio. Yet, the pedagogical knowledge for-
malized in the course generator should be independent of the concrete meta-
data used in the repositories, as one wants to avoid designing separate methods
for each repository. In this section, I describe how a mediator, an architecture
from the field of distributed information systems, enables the course generator
to abstract from the specific metadata schemas and repository accesses.4

4.2.1 Related Work

The challenge of providing uniform access to resources has been recognized
since long. Mediation information systems as proposed by Wiederhold [208]
are a well-known solution to this challenge. Its main component, called media-
tor, offers a uniform interface for accessing multiple heterogeneous data stores
(e. g., file systems, different databases, . . .). The mediator uses mappings be-
tween the data representation used in the mediator and those used in the
repository to translate queries. Each repository is enhanced with a wrapper,

4 The work described in this section was jointly developed by Philipp Kärger, Erica
Melis, Tianxiang Lu and myself [74, 75, 73, 89]. Therefore, I will use the personal
pronoun “we” in this section.

56 4 General Principles

which can be integrated into the repository itself or into the mediator. This
way, the query component does not have to know the specification of the data
sources and their query languages

4.2.1.1 Edutella

An example of a mediator architecture in the domain of technology-enhanced
learning is Edutella [127]. Edutella is a Peer-To-Peer approach for sharing
information in the Semantic Web. One of its first applications was the fed-
eration of learning objects. A peer that encodes its metadata in rdf format
can be connected to the Edutella services by specifying a wrapper. A query
service offers a uniform query language with different levels of expressiveness.
Edutella is a general purpose infrastructure and connecting a peer is rather
complex. In Edutella, a client (a human or a system) can pose queries that
are answered by all repositories connected to the P2P network. Queries can
be quite sophisticated and return single objects as well as sequences of learn-
ing objects, for instance using a prerequisite relationship. Since these systems
provide a generic, technical infrastructure for repository integration, they do
not aim at specifying the educational semantics of resources. This, however, is
needed by clients who wish to automatically retrieve resources based on their
instructional function (e. g., definition, example, etc.).

4.2.1.2 Ontology Mapping Languages

Structured representations of data can be represented as ontologies. For on-
tology mapping, expressive mapping languages have been developed, e. g.,
de Bruijn et al. [33] propose a mapping language as well as a set of pattern
templates; Pazienza et al. [142] introduce the xml-based mapping language
XeOML. Both mapping languages are very expressive but were not imple-
mented at the time of writing.

4.2.1.3 SQI

Simon et al. [168] specify an interface called sqi (Simple Query Interface) for
interoperable repositories of educational resources. The aim of sqi is to create
a standardized interface for repository access and thus sqi specifies only the
interface. It does not prescribe any implementation and therefore it does not
offer a framework for query rewriting.

4.2.1.4 Triple

An approach based on the Semantic Web rule language Triple is introduced
by Miklos et al. [116]. They describe an architecture which queries for re-
sources in the Semantic Web by specifying their metadata. Triple is based
on rdf and mainly used for data manipulation, which makes parsing, trans-
lating and processing of simple queries rather expensive.

4.2 A Mediator for Accessing Learning Object Repositories 57

<< component >>

Repository
<< component >>

Client
<< component >>

Mediator

cd: Mediator

ResourceQuery

ResourceQuery RepositoryQuery

RepositoryQuery

Register

Register

Fig. 4.3. Overview of the mediator

4.2.1.5 Reinventing the Wheel but Making It Faster

Any mediator used for course generation needs to answer queries extremely
quickly: as the evaluation in Chapter 7 will show, generating an expanded
course for a single fundamental results in about 1 500 mediator queries that
are expanded to more than 11 000 queries to the repository.

Existing ontology-based query rewriting approaches are very expressive,
but, in consequence, complicated to use and not optimized for efficiency.
Therefore, we decided to develop a query rewriting approach which is less pow-
erful than other systems but expressive enough for our translation purposes.
This specialization allows for optimizations, e. g., during query processing.

Additionally, in the developed framework it is easy to integrate new repos-
itories, by specifying a mapping between the oio and the representation used
in the repositories and implementing a small set of interfaces.

4.2.2 Overview of the Mediator Architecture

The mediator described in this section answers queries about the existence of
specific educational resources. It is illustrated in Figure 4.3. Its interfaces5 are
Web-service interfaces. A repository can register (interface Register), passing
an owl representation of its metadata structure as well as a mapping of the
oio onto this representation to the mediator. Additionally, each repository
needs to implement the interface RepositoryQuery that allows the mediator
to query the existence of educational resources. Clients access the mediator
using the interface ResourceQuery.

4.2.3 Querying the Mediator

The interface ResourceQuery takes a partial metadata description as input
and returns the set of identifiers of the educational resources that meet the
description. The metadata used in a query sent to the mediator must comply
to the oio. It can consist of three parts:

5 The figure uses uml ball-and-socket icons. A ball represents a provided interface,
a socket a required interface.

58 4 General Principles

• Class queries specify the classes the educational resources have to belong
to. They consist of a set of tuples (class c) in which c denotes the class
of the oio the returned educational resources must belong to.

• Property queries specify property metadata. They consist of a set of triples
(property prop val), where prop and val are property and value names
from the oio. Retrieved educational resources have to satisfy each given
property-value pair.

• Relation queries specify the relational metadata the educational resources
have to meet. They consist of a set of triples (relation rel id) in which
rel specifies the relation that must hold between the resource referenced
by the identifier id and the educational resources to be retrieved. rel is a
relation name of the oio.

Example 4.1. A query asking for all resources with an easy difficulty level
illustrating the definition def slope looks as follows:

(relation isFor def_slope) (class illustration)
(property hasDifficulty
easy)

While processing a query, the mediator uses the information of the oio to
expand a query to subclasses. Hence, if asked for class c, the mediator returns
resources belonging to c and to its subclasses.

Example 4.2. Continuing the above example, the expanded query is shown
below:

(relation isFor def_slope) (class example)
(property hasDifficulty easy)

(relation isFor def_slope) (class counterExample)
(property hasDifficulty easy)

4.2.4 Ontology Mapping and Query Rewriting

A repository that registers itself using the interface Register must provide
sufficient information to enable the mediator to translate the metadata of an
incoming query to the metadata used by the repository.

The translation is performed by an ontology-based query-rewriting mecha-
nism. The mechanism requires an ontological representation O of the metadata
structure used by the repository and an ontology mapping M . It uses O and
M to compute the rewriting steps for translating the queries it receives. A
registration time, a repository passes both the ontology and the mapping to
the mediator. The mappings currently used by the mediator were produced
beforehand by the developers.

4.2 A Mediator for Accessing Learning Object Repositories 59

We designed an xml-based ontology mapping language that represents
the mappings between the oio and the target ontologies. An ontology map-
ping contains a set of mapping patterns, where each mapping pattern m con-
sists of a matching pattern mp and a set of replacement patterns RP =
{rp1, . . . , rpn}. mp and RP consist of terms of the oio and the ontology of
the repository, respectively. A mapping pattern m1 = (mp1, RP1) is more
specific than a pattern m2 = (mp2, RP2) if mp2 ⊂ mp1.

The idea of the ontology mapping is that every part of a query that matches
a matching pattern is replaced by the replacement patterns. More formally,
we say a mapping pattern m = (mp, {rp1, . . . , rpn}) matches a query q if q
contains each term specified in mp. Applying m to q results in new queries
q1, . . . , qn, which are derived by replacing each term of mp by the terms of
rp1, . . . , rpn, respectively.

The ontology mapping procedure applies the most specific mapping pat-
tern to a query q. Currently, the author of an ontology mapping has to ensure
manually that there is only one such pattern; future work will investigate how
to support this automatically. A term for which no matching pattern is found
is left as it is. This approach avoids writing mapping patterns that express the
identity of terms (the use cases have shown that this is the most frequently
occurring case).

Example 4.3. To illustrate the rewriting, we assume that a repository reg-
isters with the mapping patterns (example, {exa}), (isFor, {for}), and
(hasDifficulty=easy, {difficulty level=1}). The queries from Exam-
ple 4.2 will be translated to

(relation for def_slope) (class illustration)
(property difficulty_level 1)

(relation for def_slope) (class exa)
(property difficulty_level 1)

(relation for def_slope) (class counterExample)
(property difficulty_level 1)

4.2.5 Repository Interface and Caching

In order to be accessible from the mediator, a repository must implement the
following interface that provides information about each of the above query
types:

• public Set queryClass(String id) returns the classes a given resource
belongs to.

• public Set queryRelation(String rel, String id) returns the set
of identifiers of those educational resources the resource id is related to
via the relation rel.

• public Set queryProperty(String id) returns the set of property-
value pairs the given resource has.

60 4 General Principles

In real use, performance matters and query processing is often time con-
suming mostly because of latency of the Web. For instance, course generation
involves a significant amount of queries (about 30 000 for a course consist-
ing of about 100 educational resources). Therefore, the amount of processed
queries has to be reduced. We tackled this problem by integrating a caching
mechanism into the mediator. If the same query (or sub-query) is sent repeat-
edly, the mediator does not query each connected repository again. Instead,
it returns the cached set of identifiers, which increases run-time performance
dramatically. The results of partial queries are cached, too. Section 7.1.4 pro-
vides details about evaluations of the cache.

Please note that our approach focuses on mapping of pedagogical concepts
and not on mapping of instances of the subject domain. Thus, the mediator
cannot yet use the information that fundamental c1 in repository r1 represents
the same domain entity as fundamental c2 in repository r2, say def group in
r1 and definition gruppe in r2 both define the same mathematical concept
group. In future work, we will integrate an instance mapping technology that
maps domain ontologies.

4.2.6 Limitations of the Mediator as an Educational Service

The mediator allows access to resources based on their instructional function:
a service generates partial metadata, and the mediator retrieves a list of cor-
responding educational resources. However, this is a basic service, which has
some limitations:

• How to come up with the metadata? Determining the appropriate meta-
data for finding educational resources is not trivial. Assume a service wants
to present an example of “average slope” to the learner. Is the learning
context relevant? Should it be an easy or a difficult example? These de-
cisions depend on the current learning goal, i. e., the current pedagogical
task.

• Which precise educational resources to select? Typically, the mediator re-
turns a list of resources. Which one is the most appropriate? Are they
all equivalent? A too large set might indicate that the metadata was too
general. However, narrowing it down might result in an over-specification
and hence in an empty set.

• A single educational resource might not be sufficient to achieve learning
progress. For instance, understanding content in depth requires a sequence
of carefully selected educational resources. Again, the precise resources to
select depend on the learning goal.

These limitations motivate the need for a course generator, i. e., a com-
ponent that operationalizes the educational knowledge and provides services
on a higher level of abstraction. The following sections describe the course
generator.

4.3 Pedagogical Tasks, Methods and Strategies 61

4.3 Pedagogical Tasks, Methods and Strategies

The mediator architecture allows finding educational resources that fulfill
given criteria. Typically, an agent (a learner or a machine) searches for the
resources in order to achieve a learning goal. In this section, I describe an ex-
plicit and declarative representation that can be used to encode such learning
goals.

A declarative representation of goals offers several advantages. First of all,
it allows a system to autonomously generate actions to achieve the goal if
the system uses an appropriate framework. Secondly, it provides an abstract
layer that can be used for communication between systems. Instead of only
being able to talk about the resources used in the learning process, systems
can communicate about the purposes of the learning process. Third, it can
be used to describe precisely the functionalities that the course generator
offers: for each learning goal, Paigos can calculate a sequence of educational
resources (if available) that help the learner to achieve this goal.

As I will describe in Related Work (Section 8), existing course generators
often use the domain concepts to represent learning goals. There, the gener-
ated course provides a sequence of educational resources that leads to these
concepts and includes prerequisites and other resources. However, such an
approach that restricts goals to resources is too limited. Depending on their
current situation, learners want to achieve different objectives with the same
target fundamentals, and a course should reflect the different needs associated
with the objectives. For instance, a course that helps students to discover new
content should differ different from a course that supports rehearsal.

Van Marcke [197] introduced the concept of an instructional tasks, which
helps to define learning goals in more details: an instructional task represents
an activity that can be accomplished during the learning process.

Both, the content and the instructional task are essential aspects of a
learning goal. Therefore, I define learning goals as a combination of the two
dimensions content and task. In the remainder of this volume, I will refer to
instructional tasks as pedagogical objectives, in order to distinguish them from
the declarative representation of learning goals, which I will call pedagogical
tasks :

Pedagogical Task

A pedagogical task is a tuple t = (p, L), where p is an identifier of the peda-
gogical objective and L is a list of educational resource identifiers. L specifies
the course’s target fundamentals, and p influences the structure of the course
and the educational resources selected. The order of the resources in L is rel-
evant and the same task with L’s elements ordered differently can result in a
different course.

Example 4.4. The educational objective to discover and understand content
in depth is called discover. Let’s assume that def slope and def diff are

62 4 General Principles

the identifiers of the educational resources that contain the definition of the
mathematical fundamental “average slope of a function” and “definition of
the derivative, resp., differential quotient”, respectively. We can now write
the learning goal of a learner who wants to discover and understand these two
fundamentals as the educational task t = (discover, (def slope, def diff)).
The fundamentals are processed in the given order: first def slope, followed
by def diff.

Table 4.1. A selection of pedagogical objectives used in Paigos

Identifier Description

discover Discover and understand fundamentals in
depth

rehearse Address weak points

trainSet Increase mastery of a set of fundamentals by
training

guidedTour Detailed information, including prerequisites

trainWithSingleExercice Increase mastery using a single exercise

illustrate Improve understanding by a sequence of ex-
amples

illustrateWithSingleExample Improve understanding using a single exam-
ple

Table 4.1 contains a selection of pedagogical tasks formalized within this
volume, partly designed in cooperation with pedagogical experts. Chapter 5
provides the worked-out pedagogical tasks and methods.

It is important to note that tasks correspond to goals, not to methods that
achieve these goals. The distinction between task and methods, i. e., between
what to achieve and how to achieve it [174] is important in this context since
tasks and methods represent different kinds of knowledge.

Pedagogical Method

Methods that are applicable to pedagogical tasks and decompose them are
called pedagogical methods.

Scenario

Pedagogical objectives exist on different levels of abstraction: the highest-level
objectives correspond to different types of courses that can be assembled.
These types of courses are called scenarios. The first four tasks in Table 4.1
are examples of scenarios.

4.3 Pedagogical Tasks, Methods and Strategies 63

Public Task

Pedagogical tasks can be “internal” tasks, used for internal course generation
purposes only, or tasks that are of potential interest for other services. The sec-
ond category of tasks is called public tasks. Public tasks need to be described
sufficiently precise in order to enable a communication between components as
described above. The description designed for Paigos contains the following
information:

• the identifier of the pedagogical objective;
• the number of concepts the pedagogical objective can be applied to. A

task can either be applied to a single concept (cardinality 1) or multiple
concepts (cardinality n).

• the type of educational resource (as defined in the oio) that the task can
be applied to;

• the type of course to expect as a result. Possible values are either course
in case a complete course is generated or section in case a single section is
returned. Even in case the course generator selects only a single educational
resource, the resource is included in a section. This is due to requirements
from standards like ims cp which is used by the course generator Web-
service.

• an optional element condition that is evaluated in order to determine
whether a task can be achieved. In some situations, a service only needs
to know whether a task can be achieved but not by which educational
resources. In that case, the condition can be passed to the mediator, and
if the return value is different from null, the task can be achieved. An ex-
ample is the item menu (Section 6.2.5.3) that allows the learner to request
additional content. Menu entries are displayed only if the corresponding
tasks can be achieved. For instance if there are no examples available for
def slope, then the task (illustrate, (def slope)) cannot be achieved.
Most of the time, the condition element corresponds to a subset of the pre-
conditions of the least constrained pedagogical method applicable to the
task. This way, the course generator can guarantee that a learning object
that fulfills these conditions will be returned but the exact elements will
be determined only on-demand.

• a concise natural language description of the purpose that is used for
display in menus.

Figure 4.4 contains a selection of pedagogical tasks. In the figure, all key-
words in the condition element that start with ? are variables which are
instantiated by the corresponding value at the time the condition is sent
to the mediator. The top element in Figure 4.4 describes the pedagogi-
cal task discover. It is applicable to several educational resources of type
fundamental. The bottom element specifies the task trainWithSingleExer-
cise!. It is applicable to a single educational resource of the type fundamental
and returns a result in case the condition holds.

64 4 General Principles

<tasks>

<task>

<pedObj id="discover"/>

<contentIDs cardinality="n"/>

<applicableOn type="fundamental"/>

<result type="course"/>

<condition></condition>

<description>

<text xml:lang="en">Generate a book that helps a learner to

understand the selected topics in depth.</text>

<text xml:lang="de">Erstelle ein Buch das hilft die

ausgewählten Begriffe grundlegend zu verstehen</text>

</description>

</task>

<task>

<pedObj id="illustrateWithSingleExample!"/>

<contentIDs cardinality="1"/>

<condition>(class Example)(relation isFor ?c)

(property hasLearningContext ?learningContext)

</condition>

<applicableOn type="fundamental"/>

<result type="section"/>

<description>

<text xml:lang="en">Illustrate the concept.</text>

<text xml:lang="de">Veranschauliche den Inhalt.</text>

</description>

</task>

<task>

<pedObj id="trainWithSingleExercise!"/>

<contentIDs cardinality="1"/>

<applicableOn type="fundamental"/>

<result type="section"/>

<condition>(class Exercise)(relation isFor ?c)

(property hasLearningContext ?learningContext)

</condition>

<description>

<text xml:lang="en">Train the concept.</text>

<text xml:lang="de">Übe den Inhalt.</text>

</description>

</task>

...

</tasks>

Fig. 4.4. A selection of pedagogical task descriptions

4.4 Representing Course Generation Knowledge in an HTN Planner 65

Educational tasks together with the ontology of instructional objects al-
low representing learning goals and the instructionally relevant aspects of
resources used to achieve those goals. In the next section, I describe how
the course generator Paigos uses these representations in order to assemble
personalized sequences of educational resources that support the learner in
achieving her learning goals.

4.4 Representing Course Generation Knowledge in an
HTN Planner

In this section, I describe how course generation knowledge is formalized as
an hierarchical task network planning problem. I start by motivating why
planning in general and HTN planning in particular is an adequate choice
for the formalization of course generation knowledge. Then, in Section 4.4.2,
I describe how to join the notion of HTN task and pedagogical task. The
course generation domain as formalized in this volume contains several basic
operators and methods which are reused throughout the domain. Those are
described in Section 4.5.

Part of the work described in this section was developed jointly with
Okhtay Ilghami, a member of the Automated Planning Group of the Uni-
versity of Maryland, led by Dana Nau and James Hendler.6

4.4.1 Motivation

The central principle of knowledge representation consists of having a formal
and explicit representation of the world, including how the actions of an agent
affect the world ([157], p. 19). Such a representation allows modeling manip-
ulations of the world. As a consequence, deductive processes can be used to
reason about actions, e. g., whether an action helps to achieve a goal of the
agent. Different frameworks for knowledge representation and reasoning exist,
e. g., planning, multi-agent systems and expert systems.

For technology-supported learning, Murray [121] concisely summarizes: “a
system should have a plan and should be able to plan”. Generally speaking,
a system should be able to plan, since it is practically impossible to cater for
individual learning goals and characteristics by providing manually authored
courses. It should have a plan in order to ensure global coherence, where
resources are sequenced in a manner that supports the overall learning goal
and respects the learner’s characteristics, such as competencies, motivation,
and interests.

Arguments in favor of hierarchical planning methods include that non-AI
experts quickly grasp the principal mechanism. The hierarchical decomposi-
tion of the HTN framework provides a quite natural way for formalizing the
6 The work described in this section was published in the following publications:

[183, 187, 109, 189].

66 4 General Principles

pedagogical knowledge: the pedagogical experts I cooperated with while de-
signing the course generation knowledge felt comfortable with the approach,
despite having no experience in computer science.

Additionally, HTN is efficient in planning. HTN can result in linear-time
instead of exponential-time planning algorithms if the high-level solutions
formulated in the methods always result in good low-level implementations
([157], p. 422).

The practical relevance of HTN is also “proved by demonstration” by its
wide-spread use in real-life applications. According to ([157], p. 430), most of
the large-scale planning applications are HTN planners. The primary reason
is that HTN allows human experts to encode the knowledge how to perform
complex tasks in a manner that can be executed with little computational
effort.

However, using a planning approach also brings forth some difficulties.
During course generation, educational resources serve as a basis for the rea-
soning process of the planner: different methods will be applied depending
on whether specific educational resources exist that fulfill given criteria. Say,
an introduction to the mathematical concept “Definition of Derivation” needs
to be generated. If no resource that is a textual introduction to the concept
exists, then an alternative is to use an educational resource that is an easy
example for the concept. However, taking into consideration such information
about available resources involves the difficulty that traditional AI planning
requires evaluating a method’s precondition against the planner’s world state.
In a naive approach, this would require mirroring in the world state all the
information available about the resources in all the repositories. In real world
applications, this is simply infeasible. Usually, only a subset of all the stored
resources may be relevant for the planning, but which subset is unknown
beforehand.

jshop2’s planning algorithm allows overcoming this problem. jshop2’s
planning algorithm is based on ordered task decomposition. There, tasks are
expanded in the order in which they will be performed, when the plan is ex-
ecuted. According to [122], this approach has the advantage that when the
planner plans for tasks, it knows all that is to know about the world state at
the time when task will be executed. This enables performing doing complex
numeric calculations and using external knowledge sources to retrieving in-
formation. In the case of the course generation domain, this allows accessing
the repositories that contain the educational resources as well as the learner
model.

4.4.2 Mapping Pedagogical Tasks onto HTN Tasks

In the following sections, I describe the course generation planning domain.
In a first step, I explain the relationship between the notion of a pedagogical
task and HTN task.

4.4 Representing Course Generation Knowledge in an HTN Planner 67

Section 4.3 defined a pedagogical task as a tuple t = (p, L), where p is an
identifier of pedagogical objective and L = {l1, . . . , lm} is a list of educational
resource identifiers. This definition is now mapped onto the definition of HTN
task as given in Section 2.6.4.7: there, a task atom was defined as an expression
of the form (s t1 t2 ... tn) where s is a task symbol and the arguments
t1 t2 . . . tn are terms.

Let P = {p1, . . . , pn} be the set of all pedagogical objectives. For each
pi ∈ P , we define a corresponding task symbol ti. Let T =

⋃n
i=1 ti and

f : P → T be a function that maps each pi onto the corresponding task
symbol ti. Furthermore, let g be a function that assigns each educational
resources identifier a unique name symbol s ∈ M , with M being the infi-
nite set of name symbols as defined in Section 2.6.4. Then, for a pedagogical
task t = (p, l1, . . . , lm) the corresponding HTN task atom is given by (f(p)
g(l1) . . . g(lm)).

4.4.3 Course Generation Planning Problems

The general form of planning problems in the course generation domain is
shown in Figure 4.5. The first line defines a problem with the name Problem to
be solved in the domain CourseGeneration. The problem itself is quite small:
the initial state consists of the user identifier and a logical atom that represents
the pedagogical task to be achieved (line 3–4). The task to be solved by the
problem is a task without parameters, called (generateCourse) (line 7). This
task starts the initialization process (described in detail in Section 4.6.9) that
performs conceptually irrelevant but technically required processing. Once the
initialization is complete, the pedagogical task is the goal task of the planning
problem.

Notably, the world state contains neither information about the resources
nor about the learner (besides her identifier). All this information is retrieved
dynamically, when required.

1 (defproblem Problem CourseGeneration

2 (

3 (user userId)

4 (goalTask task)

5)

6

7 ((generateCourse))

8)

Fig. 4.5. A schema of a course generation planning problem

68 4 General Principles

4.4.4 Critical and Optional Tasks

A feature that distinguishes the course generation planning domain from other
domains is that there exist a number of tasks that should be achieved if
possible, but failing to do so should not cause backtracking. These tasks are
called optional tasks. An example is the motivation of a fundamental. If there
exist educational resources that can serve as a motivation, then they should
be included in the course. If no suited resource can be found, the course
generation should continue anyway. In contrast, other tasks are critical, and
have to be achieved. In the following, critical task symbols are marked with
the suffix “!”. Whether a specific task is critical or optional depends on the
scenario. Therefore, in Paigos, for almost each critical task there exists an
equivalent optional task.

Technically speaking, optional tasks are realized by encapsulating critical
tasks in fallback methods. Figure 4.4.4 illustrates the general approach. The
first method in the Figure (lines 1–4) is an exemplary method for a critical
task. The second method (lines 6–9) encapsulates the critical task in an op-
tional task. In case this method cannot be applied (due to the critical task
not being achievable), the fallback method in lines 11–15 is applied. It has no
preconditions and not subtasks, hence achieves the task immediately.

1 (:method (taskSymbol ! term)

2 (preconditions)

3 (subtasks)

4)

5

6 (:method (taskSymbol term)

7 ()

8 (taskSymbol ! term)

9)

10

11 (:method (taskSymbol term)

12 ;; fallback method

13 ()

14 ()

15)

Fig. 4.6. Implementing optional tasks by encapsulating critical tasks in fallback
methods

In the following, I will assume that a) there exists an optional task for
each critical task, and b) for each optional task there exists a set of methods
like described above. Due to length reasons, I will not include them explicitly
in this document.

4.5 Basic General Purpose Axioms and Operators 69

4.5 Basic General Purpose Axioms and Operators

In this section, I describe the basic axioms that are used in the course gener-
ation domain but serve general purposes, such as list manipulation.

4.5.1 Testing for Equality

The axiom in Figure 4.7 tests the equality of two given terms: it matches only
if the terms passed as arguments are the same. In that case, the axiom’s body
is evaluated. Since it is empty, the axiom is satisfied.

(:- (same ?x ?x) ())

Fig. 4.7. same tests the equality of two terms

Example 4.5. The axiom (same a a) is satisfiable; the axiom (same a b) is
not.

4.5.2 List Manipulation

Figure 4.8 contains a list of axioms that perform basic list operations. The first
axiom with the head first either checks whether the first parameter (head)
is the first element of the given list or, if the first parameter is a variable,
returns the first element of the list given as parameter. The second axiom
with head first specifies that the first element of the empty list (nil) is the
empty list.

Example 4.6. The axiom (first a (a b c)) is satisfiable because ?head can
be instantiated with a and ?tail can be instantiated with (b c).

Example 4.7. The axiom (first ?p (a b c)) is satisfiable and binds ?p to a.

Analogously, the axioms in line 4 and 5 in Figure 4.8 check whether the first
parameter is the rest of the list given as parameter or, if the first parameter
is a variable, return the rest of the given list. The rest of the empty list is
defined to be the empty list.

Example 4.8. The axiom (rest (b c) (a b c)) is satisfiable because ?head
(see Figure 4.8) can be instantiated with a and ?tail can be instantiated
with (b c).

Example 4.9. The axiom (rest ?p (a b c)) results in binding ?p to (b c).

70 4 General Principles

1 (:- (first ?head (?head . ?tail)) ())

2 (:- (first nil nil) ())

3

4 (:- (rest ?tail (?head . ?tail)) ())

5 (:- (rest nil nil) ())

6

7 (:- (restrict ?result ?list1 ?list2)

8 (assign ?result (call Restrict ?list1 ?list2)))

9

10 (:- (removeElement ?result ?element ?list)

11 (removeH ?result nil ?element ?list))

12

13 (:- (removeH ?result ?tempResult ?element nil)

14 (assign ?result (call Reverse ?tempResult)))

15

16 (:- (removeH ?result ?tempResult ?first (?first . ?tail))

17 (removeH ?result ?tempResult ?first ?tail))

18

19 (:- (removeH ?result ?tempResult ?element (?first . ?tail))

20 (

21 (not (same ?first ?element))

22 (removeH ?result (?first . ?tempResult) ?element ?tail)

23))

Fig. 4.8. Axioms for basic list operations

The intent of the axiom with head restrict (lines 7–8) is to remove all
elements from the term list bound to list1 that do not occur in the term
list bound to list2 and to bind the result to the variable ?result. This
axiom uses the external function Restrict (line 8), a Java function that
implements the above described functionality (since external functions are
Java functions, they are written with an initial capital). There is no difference
between embedding an external function in an axiom or calling it directly and
binding the resulting value to a variable.

Example 4.10. Using the axiom (restrict ?r (a b c d) (a c e)), the
variable ?r is bound to the term list (a c). Similarly, the call term (assign
?r (call Restrict (a b c d) (a c e))) binds the variable ?r to the term
list (a c).

Similar functions are Concat (concatenates the given term lists or name
symbols), Length (returns the length of a given term list as an integer value),
and Reverse (reverse a given term list).

Example 4.11. The call term (call Concat (a b c) (d e) (f g h)) re-
turns the list (a b c d e f g h); (call Length (a b c)) returns 3; (call
Reverse (a b c)) returns (c b a).

4.5 Basic General Purpose Axioms and Operators 71

The axioms in lines 10–23 of Figure 4.8 serve to illustrate that in prin-
ciple such functions can be realized without resorting to call terms. These
lines define the axiom removeElement which removes the term bound to
?element from the term list bound to ?list and binds the result to the
variable ?result. The advantage of using call terms that access Java func-
tions instead of defining a set of axioms is efficiency: in general, the Java
function is evaluated much faster then the corresponding axioms.

Example 4.12. The axiom (removeElement ?var (a b c) c) binds ?var to
(a b).

4.5.3 Binding a Variable to All Terms of a Term List

An assignment expression (assign ?var t) as defined in Section 2.6.4 binds
?var to the term t. The axioms illustrated in Figure 4.9 extend this be-
havior to a list: if the precondition of an operator or method contains
(assignIterator ?var termList), all bindings of ?var to the elements of
the list termList will be generated. The first axiom binds ?var to the first
value of the list; if the planning process fails at any later time, backtrack-
ing causes the second axiom to be applied, which recurses into the list and
thus applies the first axiom to bind ?var to the next value. This process is
repeated until the list is empty. In that case, the axiom cannot be satisfied
and the planning process backtracks.

(:- (assignIterator ?var (?head . ?tail))

(assign ?var ?head))

(:- (assignIterator ?var (?head . ?tail))

(assignIterator ?var ?tail))

Fig. 4.9. assignIterator binds a variable to all terms of a list

Example 4.13. (assignIterator ?var (a b c)) first binds ?var to the term
a. Backtracking can later cause binding ?var to b and finally to c.

4.5.4 Manipulating the World State

Methods cannot change the world state, unlike operators. Therefore, a method
that requires changes to the world state has to resort to operators. The opera-
tors illustrated in Figure 4.10 provide a generic means to achieve this function-
ality. !!addInWorldState adds the given parameter as an atom to the world
state, while !!removeFromWorldState removes it. The two exclamation marks
denote the operators as being internal operators, that is, not corresponding to

72 4 General Principles

(:operator (!!addInWorldState ?atom)

;; precondition

()

;; delete list

()

;; add list

(?atom)

)

(:operator (!!removeFromWorldState ?atom)

;; precondition

()

;; delete list

(?atom)

;; add list

()

)

Fig. 4.10. !!addInWorldState and !!removeFromWorldState change the world
state

actions performed in a plan. Examples of methods using these two operators
are, e. g., initializing methods that add information about the user and her
learning goals to the world state (see Section 4.6.9).

4.6 Basic Operators and Methods of the Course
Generation Domain

The above axioms, operators and methods might be of use in any planning
domain. The operators and methods describe in the subsequent sections are
domain-specific: they insert educational resources into a course, access in-
formation about the learner, etc. In the following, whenever I use the term
“resource” (e. g., a resource is given as parameter, added to the world state,
etc.) I used it as abbreviation for “resource identifier”.

4.6.1 Inserting References to Educational Resources

The result of a planning process in the course generation domain is a plan con-
sisting of a sequence of operators that, when applied, generates a structured
list of references to educational resources and learning-support services. These
“inserting” operators and methods are described below and in the following
two sections.

Several operators and methods handle the insertion of references to educa-
tional resources in a course. The basic operator is shown in Figure 4.11. The

4.6 Basic Operators and Methods of the Course Generation Domain 73

(:operator (!insertResource ?r)

;; precondition

()

;; delete list

()

;; add list

((inserted ?r))

)

Fig. 4.11. !insertResource inserts references to an educational resource in a course

operator has no precondition and delete list, and adds a logical atom to the
world state that describes that a resource ?r was inserted into the course.

Note that the basic operators in the course generation domain have nei-
ther preconditions nor delete or add lists. This is one peculiarity of the course
generation domain as formalized in Paigos: in general, resources are not con-
sumed in the sense that they are no longer available, like, say, fuel that is
consumed in the travel domains. An educational resource that is added into
a course can be added again at a later time (the only potential constraint
being that it makes sense from a pedagogical point of view). Similarly, start-
ing/ending a section can be realized at any time and repeatedly without con-
suming any resources.

1 (:method (insertResourceOnce! ?r)

2 ((not (inserted ?r)))

3 ((!insertResource ?r))

4)

5

6 (:method (insertResource ?r)

7 ((not (inserted ?r)))

8 ((!insertResource ?r))

9

10 ()

11 ()

12)

Fig. 4.12. insertResourceOnce! and insertResource insert a resource in a course
once

The operator !insertResource is used by the methods in Figure 4.12.
The first method (lines 1–4) is applicable only if the given resource was not
yet inserted into the course and in that case inserts the resource: it “decom-
poses” the task atom (insertResourceOnce! ?r) into the primitive task

74 4 General Principles

atom (!insertResource ?r), otherwise it fails. The second method inserts
a given resource if it was not yet inserted (line 7–8), otherwise achieves the
task directly since it has no subtasks (lines 10–11).

Example 4.14. Let

T =((insertResourceOnce! a) (insertResource b)
(insertResource c) (!insertResource d)
(insertResourceOnce! a))

be a task list and S =((inserted c) (inserted d)) be the current world
state. Then, the first two tasks can be achieved by applying the methods of
Figure 4.12 and the operator of Figure 4.11, resulting in the plan

((!insertResource a) (!insertResource b)).

Since c was already inserted, the third subtask is achieved by the second
precondition-subtask pair of the bottom method in Figure 4.12 (lines 10–11):
there, the subtask consist of the empty list, thus the task is achieved with-
out applying an operator. The fourth task (!insertResource d) (different
from the previous ones, note the !) is directly achieved by the operator of
Figure 4.11, and hence d is inserted although the world state indicates it was
already inserted. At this time, the resulting plan is

((!insertResource a) (!insertResource b)
(!insertResource d)).

However, the final task (insertResourceOnce! a) cannot be achieved: it was
already inserted and no method other than the upper method of Figure 4.12
(lines 1–4) is applicable on it. Hence, the planning process backtracks.

(:method (insertAllResources (?head . ?tail))

MethodInsertAllResources

()

(

(insertResource ?head)

(insertAllResources ?tail)

)

)

(:method (insertAllResources nil)

MethodInsertAllResourcesFallback

()

()

)

Fig. 4.13. insertAllResources inserts in a course all resources of a given list

4.6 Basic Operators and Methods of the Course Generation Domain 75

The methods illustrated in Figure 4.13 insert into a course all resources
from the given list. The bottom method makes sure that the recursion per-
formed in the top method terminates in case the list has no (more) elements.

(:- (allInserted (?head . ?tail))

(

(inserted ?head)

(allInserted ?tail)

)

)

(:- (allInserted nil)

()

)

Fig. 4.14. allInserted tests whether the given resources are contained in the
course

Figure 4.14 contains the axiom allInserted that is used to test whether
all resources of a given term list are contained in the current course. The
upper axiom tests whether the first element is inserted, and if it is, recurses
into the rest of the list. The bottom axiom ends the recursion.

(:method (addInWorldStateAsInserted (?head . ?tail))

MethodAddInWorldStateAsInserted

()

(

(!!addInWorldState (inserted ?head))

(addInWorldStateAsInserted ?tail)

)

)

(:method (addInWorldStateAsInserted nil)

MethodAddInWorldStateAsInsertedEmptyList

()

()

)

Fig. 4.15. addInWorldStateAsInserted marks a list of resources as inserted

Under some circumstances, resources need to be marked as inserted with-
out actually being inserted into a course. Figure 4.15 illustrates the methods
that achieve this functionality. The upper method recurses into a list of refer-

76 4 General Principles

ences and adds in the world state the fact that the references were inserted.
Yet, since the method does not involve the operator !insertResource, the
references are not inserted into the course, but only marked as such. The lower
method ends the recursion as soon as the list has become empty.

(:- (getNonInserted ?result ?resources)

(getNIH ?result (call Reverse ?resources) nil))

(:- (getNIH ?result ?resources ?temp)

((same ?resources nil)

(assign ?result ?temp)

((first ?el ?resources)

(inserted ?el)

(rest ?tail ?resources)

(getNIH ?result ?tail ?temp))

((first ?el ?resources)

(rest ?tail ?resources)

(getNIH ?result ?tail (?el . ?temp)))

)

Fig. 4.16. getNonInserted selects those resources from a list that were not inserted

The axiom getNonInserted displayed in Figure 4.16 is used to select those
resources from a given list that were not yet inserted into the course. It uses a
helper axiom (getNIH) that recurses into the list and tests whether the current
resource is marked as inserted into the world state. The result is then bound
to ?result.

4.6.2 Starting and Ending Sections

Figure 4.17 contains the four operators that are used for creating structure
within a course. The top three operators applicable to !startSection begin
a section. They vary only in the number of arguments. The lower operator
ends a section. The intended meaning is that all references that are inserted
between a !startSection and an !endSection operator are contained within
the same section. Sections can be nested.

The !startSection operators require additional information to be passed
by the parameters. This information is used later to generate the section titles,
which is described in detail later in Section 4.9. For the time being, it suffice
to know that the parameter ?type is used to provide information about the
type of the section, say an introduction or a training section. The parameter
?parameters contains the list of identifiers of the fundamentals the section

4.6 Basic Operators and Methods of the Course Generation Domain 77

(:operator (!startSection ?type)

()

()

()

)

(:operator (!startSection ?type ?parameters)

()

()

()

)

(:operator (!startSection ?type ?parameters ?task)

()

()

()

)

(:operator (!endSection)

()

()

()

)

Fig. 4.17. !startSection and !endSection create structure

is for. In addition, sections can contain information about the pedagogical
task for which they were generated: the third !startSection operator allows
passing a task as an argument. When the course is generated after the planning
process by applying the operators, the task is added as metadata of the section.
This allows preserving the information about the pedagogical context that was
available during the planning process. Other components can later use this
information. For instance, a suggestion mechanism could interpret the fact
that a students fails to solve an exercise taking into consideration whether
the exercise occurs in the context of learning the prerequisites or whether it
occurs during training the goal fundamentals. The task information could also
be used for re-planning a section by passing the task to the course generation
service.

For most pedagogical tasks t in Paigos there exists a task that embeds
the task t into a section. These tasks are marked with the suffix Section. It
depends on the scenario whether the “original” task or the embedded variant
is used.

Figure 4.18 illustrates the general approach used for creating sections. For
every task atom whose head has the suffix Section (for instance taskSymbol-
Section), there exists a method as shown in the Figure. This method starts

78 4 General Principles

(:method (taskSymbol Section ?parameters ?type

?sectionParameters ?task)

()

(

(!startSection ?type ?sectionParameters ?task)

(taskSymbol ?parameters)

(!endSection)

)

)

Fig. 4.18. Embedding tasks into sections

a section with the given parameters, tries to achieve the task taskSymbol ,
and then closes the section. In the following descriptions, I will omit most of
these “section” tasks in order to keep the number of methods limited.

4.6.3 Inserting References to Learning-Support Services

Section 2.1 defined a learning-support tool as any application that supports
the learner during her learning process in a targeted way and that can be
integrated within the learning process automatically.

(:- (learningServiceAvailable ?serviceName)

(call LearningServiceAvailable ?serviceName))

Fig. 4.19. The axiom learningServiceAvailable tests whether a learning-support
service is available

Whether such a service is available or not can vary depending on the actual
configuration of the environment in which the course generator is used. Paigos

offers an axiom to check the availability of service (illustrated in Figure 4.19)
using an external function for the query. This way, a method’s preconditions
can test for the availability of a service.

In case the service is available, methods can use the operators illustrated
in Figure 4.20 to insert into the course references to the services. Later, when
the course is presented to the learner, these references can be rendered as
links. The variables of the operators specify the type of service to be used
(?serviceName), the method of the service (?methodName), the resources po-
tentially required by the method ?resources, and additional parameters if
necessary (?parameters). The names and semantics of the parameters of these
two operators are based on the requirements of the xml-rpc-protocol, a stan-
dard for remote procedure calls over the Internet [212].

4.6 Basic Operators and Methods of the Course Generation Domain 79

(:operator (!insertLearningService

?serviceName ?methodName ?resources)

()

()

()

)

(:operator (!insertLearningService

?serviceName ?methodName ?resources

?parameters)

()

()

()

)

Fig. 4.20. insertLearningService inserts references to learning-support services

Methods that potentially insert references to learning-support services
should encode a fallback branch that is applied if the service is not avail-
able. This way, the pedagogical knowledge remains reusable, regardless of the
actual configuration of the learning environment.

4.6.4 An Operator for Dynamic Text Generation

Courses generated by Paigos can include templates used for dynamic text
generation. These generated texts augment the dynamically generated courses
with texts that set the student’s mind, support the students’ understanding of
the structure and of the learning goals, and make transitions between educa-
tional resources smoother. The precise mechanism is described in Section 4.9;
here, the basic operators is only briefly mentioned since it will be used in
several of the following methods.

(:operator (!text ?type ?parameters)

()

()

()

)

Fig. 4.21. !text generates symbolic text representations

The operator (illustrate in Figure 4.21 is used to create a representation
of text of a given type and possibly further specified by the additional param-
eters.

80 4 General Principles

(:operator (!dynamicTask ?educationalObjective ?contentIds)

()

()

()

)

Fig. 4.22. !dynamicTask enables dynamic subtask expansion

4.6.5 Dynamic Subtask Expansion

The operator in Figure 4.22 is used to achieve dynamic subtask expansion,
i. e., to stop the course generation process even though not all resources are
selected and to continue the process at a later time. The advantages of this
stop-and-continue are described in detail in Section 4.8; here I will only explain
the technical realization.

Since dynamic subtask expansion is not implemented in jshop2’s planning
algorithm, it is simulated in Paigos in the following way: if a subtask t of a
method is not to be expanded, then t is given as parameter to the primitive
task atom !dynamicTask. Since the operator that performs this task atom has
no preconditions, it can be performed directly. When the operator is applied
during plan execution, it creates a special element called dynamic item. At
a later time, when the course is presented to the learner and the server that
handles the presentation detects a dynamic item on the page, it passes the
associated dynamic task to the course generator. Then, the course generator
assembles the educational resources that achieve the task. In a final step, these
resources replace the dynamic item and are presented to the learner.

4.6.6 Accessing Information about Educational Resources

This section describes the call terms, i. e., the Java functions that Paigos uses
to access information about educational resources. As explained in Section 4.2,
the course generator does not directly access the repositories in which the
resources are stored but uses a mediator.

GetResources

The call term (GetResources (mediatorQuery)) returns the list of identi-
fiers of those educational resources that fulfill the given mediator query.

Example 4.15. The call term

(call GetResources
((class Exercise) (relation isFor def slope)))

returns the list of all exercises for the educational resource with the identifier
def slope.

4.6 Basic Operators and Methods of the Course Generation Domain 81

GetMetadata

The call term (GetMetadata property identifier) returns the value of
the given property of the educational resources with the given identifier.

(:- (typicalLearningTime ?id ?time)

((assign ?time (call GetMetadata typicalLearningTime ?id))))

Fig. 4.23. typicalLearningTime retrieves the typical learning time of a resource

In the current version of Paigos, GetMetadata is only used in the axiom
displayed in Figure 4.23. The axiom binds the variable ?time to the typical
learning time of the resource with the given identifier. This information is re-
quired for the scenario “exam preparation”, which assembles a list of exercises
that can be solved by the learner within a specified time-frame.

GetRelated

During course generation, it is often required to find educational resources
which are connected to a given resource by some relation. A typical ex-
ample is to find the prerequisites of a fundamental. In Paigos, the func-
tion GetRelated provides this functionality: the call term (GetRelated
startingSet distance relation) returns a list of all identifiers of edu-
cational resources which are connected to the elements of the starting set by
the given relation up to the given distance. If the distance equals −1, then
the relation is followed without any limit. The returned list of identifiers is
unsorted. Note that this behavior is only reasonable for transitive relations.
Paigos does not check whether the given relation is transitive; this has to be
ensured by the developer of the pedagogical knowledge.

The relation is followed using the mediator. Therefore, the relation is eval-
uated from the perspective of the resource to be tested, not from the resources
in the starting set. This may be confusing at first glance, since the relation
seems to be “reversed”:

A

B

E

C D

G

F

Fig. 4.24. A graph illustrating dependencies between resources

82 4 General Principles

Example 4.16. Let’s assume that the graph shown in Figure 4.24 illustrates
the relationship requires between a set of fundamentals, e. g., A requires B.
Then, (GetRelated (A) 2 isRequiredBy) returns all fundamentals that are
connected to A by the relation requires up to a distance of two, which are
the elements (E G C F B) (or in any other permutation since the result is
not sorted). (GetRelated (A E) 1 isRequiredBy) returns the result (B E
G F); (GetRelated (D) -1 requires) returns (A B C) (or any other per-
mutation).

Sort

Sorting a set of resources with respect to a given relation is done using the
function sort: the call term (Sort resources relation) returns the ele-
ment of resources in topological order, sorted with respect to the graph that
spanned by the fundamentals as nodes and the relations between the elements
of resources as edges.
Example 4.17. Referring to the graph in Figure 4.24 (Sort (B D C A) isRe-
quiredBy) returns (A B C D); (Sort (C B E F G) isRequiredBy) can re-
turn (B C E F G), (B C E G F), (E F G B C), or (E G F B C).

The implementation of GetRelated and Sort in Paigos allows for an
additional feature: it is possible to annotate the relation with constraints
about metadata. In order for such an “extended” relation to hold between
two resources, both resources have to fulfill the metadata constraints. For
instance, if the metadata constraint specifies a learning context, then the two
resources have to have this learning context. A list of constraints is interpreted
as a disjunction: any of the constraints need to hold for the extended relation
to hold.

The method in Figure 4.25 illustrates the use of “extended” relations. The
task atom insertWithVariantsIfReady! serves to insert an auxiliary in a
course and at the same time to mark all its variants as inserted. The relation
isVariantOf represents the fact that two educational resources are almost
equivalent and differ only in a minor aspect. For instances, two exercises a
and b are marked as being variants if they present the same problem but a
uses a graph in addition to the text. More often than not, only a either a or
b should be contained in a course.

The method works as follows: if the resource r given as parameter was not
yet inserted into the course (line 3) and the learner is ready to see r (line 4,
readyAux is explained in detail in Section 4.6.8), then all resources that are
variants of r and of the adequate learning context (line 6–11) are bound to
?variants. Finally, r is inserted into the course (line 14) and its variants are
marked as inserted (line 15).

4.6.7 Axioms for Accessing the Learner Model

The axioms displayed in Figure 4.26 allow querying information stored in the
learner model. The queries are evaluated for the current user, whose identifier

4.6 Basic Operators and Methods of the Course Generation Domain 83

1 (:method (insertWithVariantsIfReady! ?r ?resource)

2 (

3 (not (inserted ?r))

4 (readyAux ?r ?resource)

5 (learnerProperty hasEducationalLevel ?el)

6 (assign ?variants

7 (call GetRelated (?r) -1

8 (((class InstructionalObject)

9 (relation isVariantOf ?r)

10 (property hasLearningContext ?el)

11))))

12)

13 (

14 (!insertResource ?r)

15 (addInWorldStateAsInserted ?variants)

16)

17)

Fig. 4.25. !insertWithVariantsIfReady inserts a resource and all its variants

is stored in the world state in the atom (user identifier). The upper axiom
takes a property as input and binds the variable ?value to the value stored
in the learner model for this property and for the user identified by ?userId.
The lower axiom takes as additional input the identifier of a resource. This
allows querying information about the user with respect to a given resource.
Both axioms use the Java function LearnerProperty to connect the course
generator to the learner model.

(:- (learnerProperty ?property ?value)

(

(user ?userId)

(assign ?value (call LearnerProperty ?userId ?property))

)

)

(:- (learnerProperty ?property ?r ?value)

(

(user ?userId)

(assign ?value (call LearnerProperty ?userId ?property ?r))

)

)

Fig. 4.26. learnerProperty accesses information about the learner

84 4 General Principles

Example 4.18. Let Eva be the identifier of the user for whom the course is cur-
rently generated. Then, (learnerProperty hasEducationalLevel ?edlev)
binds ?edlev to the educational level of the learner, e. g., universityFirst-
Year for a first year university student. (learnerProperty hasCompetency-
Level def slope ?cl) binds ?cl to the current competency level that the
learner has reached with respect to the fundamental def slope, e. g., 3.

Table 4.2. Learner properties used during course generation

Identifier Description

hasEducationalLevel The current level of education (e. g., high
school and university first year) of the user

hasAllowedEducationalLevel The levels of education the user is able to
handle

hasField The fields of interest of the user

Table 4.3. Learner properties evaluated with respect to a resource

Identifier Description

hasAlreadySeen Whether the user has already seen the
given resource (true/false)

hasCompetencyLevel The agglomerated competency level of the
learner

hasCompetencyArgue The competency level of the competency
“argue” of the learner

hasCompetencyCommunicate The competency level of the competency
“communicate” of the learner

hasCompetencyLanguage The competency level of the competency
“language” of the learner

hasCompetencyModel The competency level of the competency
“model” of the learner

hasCompetencyRepresent The competency level of the competency
“represents” of the learner

hasCompetencySolve The competency level of the competency
“solve” of the learner

hasCompetencyThink The competency level of the competency
“think” of the learner

hasCompetencyTools The competency level of the competency
“tools” of the learner

hasAnxiety The anxiety the learner exhibits (experi-
mental)

hasMotivation The motivation the learner exhibits (ex-
perimental)

4.6 Basic Operators and Methods of the Course Generation Domain 85

Tables 4.2 and 4.3 list the learner properties that can be used during
course generation. All the properties are based on the learner model that is
currently used by Paigos, called slm. slm is based on the PISA competency
framework (see Section 3.5). The slm represents all information about the
learner’s “mastery” and his anxiety and motivation with respect to a funda-
mentals (Table 4.3). All values of the properties in Table 4.3 are represented
as a value between one and four, with one representing the lowest and four the
highest “mastery”, motivation, etc. The competence level can be further di-
vided with respect to specific mathematical competencies, such as “solve” and
“model”. The last two properties in Table 4.3 model situational factors, which
are difficult to assess.7 At the time being, they are provisionally supported in
Paigos.

(:- (equivalent ?cl elementary)

(call <= ?cl 1))

(:- (equivalent ?cl simple_conceptual)

((call > ?cl 1)

(call <= ?cl 2)))

(:- (equivalent ?cl multi_step)

((call > ?cl 2)

(call <= ?cl 3)))

(:- (equivalent ?cl complex)

(call > ?cl 3))

Fig. 4.27. Translating terms from the learner model to metadata

A recurring problem for course generation is that information that is rele-
vant for the generation process is stored in different components, using differ-
ent terminologies. This problem motivated the development of the mediator
for repository integration. A similar problem arises for learner properties, be-
cause often the metadata used to annotate the educational resources employs
terms different from those used by the learner model. Ideally, the repository
mediator (or a different one) is able to handle the translation. However, in
the current implementation of Paigos, a set of axioms handles this neces-
sary translation. They are shown in Figure 4.27. The axioms specify that the
symbols elementary, simple conceptual, multi step, and complex (used
in the metadata) correspond to numerical values v with v ≤ 1, 1 < v ≤ 2,
2 < v ≤ 3, and v > 3, respectively. In the current version of Paigos, these
are the only cases which require a translation
7 The learner model of LeActiveMath uses the user’s performance in exercise

solving to estimate his motivation and anxiety.

86 4 General Principles

4.6.8 Processing Resources Depending on Learner Characteristics

The axioms and methods in this section infer information about resources and
modify the world state depending on characteristics of the learner.

(:- (known ?f)

(

(learnerProperty hasCompetencyLevel ?f ?cl)

(call >= ?cl 3)

)

)

Fig. 4.28. known tests whether the learner “knows” a concept

In the PISA competency framework, a learner who has reached a com-
petency level of three is able to perform extensive computations. The axiom
shown in Figure 4.28 is satisfied if the learner has reached a competency level
greater or equal to three with respect to the given fundamental. In other
words, the axiom checks whether the concept is “known”.

(:- (allKnownOrInserted (?head . ?tail))

(

(or (inserted ?head) (known ?head))

(allKnownOrInserted ?tail)

)

)

(:- (allKnownOrInserted nil)

())

Fig. 4.29. allKnownOrInserted tests whether all resources in a given list are either
known or were inserted into the course

Figure 4.29 contains axioms that are used to test whether all resources in
a given list are either known or were inserted into the course. The top axiom
performs the test and, if successful, the recursion step; and the bottom axiom
ends the recursion.

In most cases, an auxiliary r (e. g., an example, text, and exercise) should
be inserted into a course only if the learner is prepared to understand it.
In Paigos, such a test is encoded in the axiom illustrated in Figure 4.30.
In short, the axiom checks whether all fundamentals that r is for are either
known or were inserted into the course (in other words whether an opportunity
is provided to the learner to understand the necessary fundamentals before

4.6 Basic Operators and Methods of the Course Generation Domain 87

1 (:- (readyAux ?r ?f)

2 (

3 (learnerProperty hasEducationalLevel ?el)

4 (removeElement ?result ?f

5 (call GetResources

6 ((class Fundamental)

7 (relation inverseIsFor ?r)

8 (property hasLearningContext ?el))))

9 (allKnownOrInserted ?result)

10 (allInserted (call GetResources

11 ((class Auxiliary)

12 (relation isRequiredBy ?r)

13 (property hasLearningContext ?el))))))

Fig. 4.30. The axiom readyAux tests whether the learner is ready to see an auxiliary

he reaches r). What makes the matter complicated is the fact that often a
resource r is used relative to a specific fundamental f, e. g., when training f.
In this case, f should be excluded from the list of concepts that need to be
known. Otherwise, the contradiction might arise that an auxiliary r should be
used for learning an unknown fundamental f, but r would never be presented
since one of the fundamental it is for (namely f) is unknown.

In detail, the axiom in Figure 4.30 works as follows: first, it retrieves the
educational level of the learner (line 3). Then, it collects all fundamentals that
r is for, but removes from this list the fundamental f given as a parameter
(lines 4–8). Then the axiom checks whether the remaining fundamentals are
either known or were inserted into the course (line 9). In addition, r should
only be presented if all other auxiliaries it requires where inserted before r
(lines 10–13). If all conditions are fulfilled, then the auxiliary is classified as
being “ready” for the learner.

The method displayed in Figure 4.31 uses the axiom readyAux to insert a
given auxiliary if it wasn’t already inserted and the learner is “ready” for it
(relative to the given fundamental).

(:method (insertAuxOnceIfReady! ?r ?f)

(

(not (inserted ?r))

(readyAux ?r ?f)

)

((!insertResource ?r))

)

Fig. 4.31. insertAuxOnceIfReady! inserts an auxiliary if the learner is ready to
see it

88 4 General Principles

(:method (insertAllAuxOnceIfReady (?head . ?tail) ?resource)

()

(

(insertAuxOnceIfReady ?head ?resource)

(insertAllAuxOnceIfReady ?tail)

)

)

(:method (insertAllAuxOnceIfReady nil)

()

()

)

Fig. 4.32. insertAllAuxOnceIfReady inserts all references in a list if the learner is
ready

The methods shown in Figure 4.32 perform the same functionality, but on
a list of references. Each reference is inserted into the course if the learner is
“ready” for it and it was not yet inserted.

The axioms in Figure 4.33 remove all fundamentals from a given list of re-
sources that are either known by the learner or inserted into the course, and it
binds the result to the variable ?result. The helper axiom removeKnownFun-
damentalsH performs the main work. The first preconditions (lines 6–7) rep-
resent the base case and end the recursion if the list of left fundamentals is
empty. The second preconditions (lines 11–14) check whether the current fun-
damental is either inserted or known. In this case, the current fundamental
is discarded and the recursion continues with the rest of the fundamentals.
Otherwise, the current fundamental is neither known nor inserted and hence
is put into the result list (lines 18-21).

When resources are inserted into a course, often it is preferable to present
new, previously unseen resources to the learner, and to show seen resources
only if no new resources are available. This is achieved by the axiom shown
in Figure 4.34. There, the axiom sortByAlreadySeen and a helper axiom
partition the given list of resources into unseen and seen resources. Finally,
these two lists are concatenated and returned as a single list in which un-
seen resources come first (lines 7–8). The preconditions in lines 12–15 use the
learner property hasAlreadySeen to access the learner model for the required
information. In case the resource was not yet seen, it is inserted into the first
list. Otherwise it is inserted into the second list (lines 19–21).

4.6.9 Initializing and Manipulating Information about
the Learning Goal

This section describes operators and methods that initialize a course genera-
tion problem and provide means to manipulate its learning goals.

4.6 Basic Operators and Methods of the Course Generation Domain 89

1 (:- (removeKnownFundamentals ?result (?head . ?tail))

2 ((removeKnownFundamentalsH ?result nil ?head ?tail)))

3

4 (:- (removeKnownFundamentalsH ?result ?tempResult ?c ?tail)

5 (

6 (same ?c nil)

7 (assign ?result ?tempResult)

8)

9

10 (

11 (or (inserted ?c) (known ?c))

12 (first ?next ?tail)

13 (rest ?newRest ?tail)

14 (removeKnownFundamentalsH ?result ?tempResult ?next ?newRest)

15)

16

17 (

18 (first ?next ?tail)

19 (rest ?newRest ?tail)

20 (removeKnownFundamentalsH ?result (?c . ?tempResult)

21 ?next ?newRest)

22)

23)

Fig. 4.33. removeKnownFundamentals removes from the given fundamentals those
fundamentals the learner “knows”

The methods in Figure 4.35 add the information in the world state that the
fundamentals in the list are the content learning goals of the current course.
This is represented by the task atom (targetFundamental fundamental).

Figure 4.36 contains the method used to initialize the world state and
start the course generation. Basically, it takes the goal task that was given
in the definition of the planning problem (line 3) and breaks it up into its
constituents, namely its pedagogical objective (represented in the world state
using the atom scenario, line 7) and its fundamentals, which are inserted
as target fundamentals using the methods of Figure 4.35 (line 8). The final
subtask of the method performs some additional processing, explained in the
next paragraph.

The method in Figure 4.37 analyzes the pedagogical objective of the course
and starts the course generation. Technical issues with jshop2 require that the
pedagogical objective is provided in string format, therefore the method maps
the string to a task atom (e. g., lines 2–3 and 5–6). In addition, some pedagogi-
cal objectives are decomposed into a different objective and additional param-
eters. For instance, the tasks trainCompetencyThink and examSimulation30
are split into their main objective (trainCompetency and examSimulation)

90 4 General Principles

1 (:- (sortByAlreadySeen ?result ?list)

2 (sortByAlreadySeenh ?result ?list nil nil)

3)

4

5 (:- (sortByAlreadySeenh ?result ?list ?notSeen ?seen)

6 (

7 (same ?list nil)

8 (assign ?result (call Concat ?notSeen ?seen))

9)

10

11 (

12 (first ?current ?list)

13 (learnerProperty hasAlreadySeen ?current nil)

14 (rest ?tail ?list)

15 (sortByAlreadySeenh ?result ?tail (?current . ?notSeen) ?seen)

16)

17

18 (

19 (first ?current ?list)

20 (rest ?tail ?list)

21 (sortByAlreadySeenh ?result ?tail ?notSeen (?current . ?seen))

22)

23)

Fig. 4.34. sortByAlreadySeen partitions a list into unseen and seen resources

(:method (insertTargetFundamentals (?head . ?tail))

()

(

(!!addInWorldState (targetFundamental ?head))

(insertTargetFundamentals ?tail)

)

)

(:method (insertTargetFundamentals nil)

()

()

)

Fig. 4.35. insertTargetConcepts adds in the world state information about the
content goals of a course

4.6 Basic Operators and Methods of the Course Generation Domain 91

1 (:method (generateCourse)

2 (

3 (goalTask (?pedObjective ?resources))

4 (learnerProperty hasEducationalLevel ?el)

5)

6 (

7 (!!addInWorldState (scenario ?pedObjective))

8 (insertTargetFundamentals ?resources)

9 (insertAndPlanGoal ?pedObjective ?resources)

10)

11)

Fig. 4.36. Initializing the world state

1 (:method (insertAndPlanGoal ?pedObjective ?resources)

2 ((same ?pedObjective "guidedTour"))

3 ((guidedTour ?resources))

4 ...

5 ((same ?pedObjective "discover"))

6 ((discover ?resources))

7 ...

8 ((same ?pedObjective "trainCompetencyThink"))

9 (

10 (!!changeScenario trainCompetency)

11 (trainCompetency think ?resources)

12)

13 ...

14 ((same ?pedObjective "examSimulation30"))

15 (

16 (!!changeScenario "examSimulation")

17 (examSimulation 30 ?resources)

18)

19 ...

20)

Fig. 4.37. insertAndPlanGoal starts the course generation

and a parameter that indicates the specific competency to train or the time
allocated for the exam simulation (lines 10 and 16). This requires changing
the scenario (see the following operator).

Figure 4.37 only contains parts of the method: the actual method provides
a set of preconditions and subtasks for each “public” pedagogical task, i. e., for
each task that the course generator achieves as part of his service provision.

92 4 General Principles

(:operator (!!changeScenario ?newScenario)

(;; precondition

(scenario ?oldScenario)

)

(;; delete list

(scenario ?oldScenario)

)

(;; add list

(scenario ?newScenario))

)

Fig. 4.38. !!changeScenario changes the scenario of the current course

Changing the scenario is done using the operator !!changeScenario. It
simply removes the logical atom denoting the scenario and inserts a new one
(see Figure 4.38).

(:operator (!!setAchieved ?task)

()

()

((achieved ?task))

)

Fig. 4.39. !!setAchieved marks a task as achieved

The operator shown in Figure 4.39 inserts a logical atom in the world
state that marks the given task as achieved. After the application, the atom
(achieved t) can be used for detecting whether a task t was already
achieved.

Sometimes it is required to extract all fundamentals from a given list that
are not the content goals of the course. This is done by the axioms shown in
Figure 4.40. getNonTargetFundamentals uses a helper axiom to recurse onto
a list and to remove all fundamentals that are content goals.

This completes the description of the axioms, operators and methods that
serve as a general basis for the course generation domain. Chapter 5 describes
how they are used in course generation scenarios. The remainder of the current
chapter will focus on how to generate a course from a plan and novel features
that become possible within Paigos.

4.7 Converting a Plan into a Course

After a plan is found, it is used to generate a course. This section describes
the underlying process.

4.7 Converting a Plan into a Course 93

(:- (getNonTargetFundamentals ?result ?elements)

(getNTCH ?result (call Reverse ?elements) nil))

(:- (getNTCH ?result ?elements ?temp)

(

(same ?elements nil)

(assign ?result ?temp)

)

(

(first ?el ?elements)

(targetFundamental ?el)

(rest ?tail ?elements)

(getNTCH ?result ?tail ?temp))

(

(first ?el ?elements)

(rest ?tail ?elements)

(getNTCH ?result ?tail (?el . ?temp))

)

)

Fig. 4.40. getNonTargetFundamentals removes all content goals from a given list
of fundamentals

Paigos represents courses using the element omgroup, which is an element
from the OMDoc standard, a semantic knowledge representation for math-
ematical documents [84, 85, 107]. The purpose of the omgroup element is to
represent collections of resources and is as such independent of the mathe-
matical domain. It can also be easily mapped/transformed into other data
structures with similar aims, such as ims cp.

An omgroup element has a simple structure; it consist of metadata infor-
mation (e. g., the author and title of the element), references to other OMDoc

elements, other omgroup elements, and dynamic items that allow the dynamic
inclusion of resources generated by services.

Example 4.19. Figure 4.41 contains an excerpt from a plan generated by Pai-

gos, assembled for the task (discover (def diff def diff f thm diff-
rule sum)) (namespaces are omitted in the example; the complete plan is
contained in the appendix). The first lines add the goal task information in
the world state (lines 1–4). The following operators start several new sections:
for the overall course (lines 5–6, note that the section includes the task for
which the section was created), and then for the first section, which contains an
explanation for the overall goals of the course (line 7–9). This section is closed,
and new section begins, for the chapter on the first goal fundamental the “def-
inition of the derivative, resp., differential quotient” (def diff, line 10), and
for the first page, the necessary prerequisites (line 11). The page starts with a
dynamically created text that provides an explanation on the purpose of the

94 4 General Principles

1 (!!addInWorldState (scenario discover))
2 (!!addInWorldState (targetFundamental def_diff))
3 (!!addInWorldState (targetFundamental def_diff_f))
4 (!!addInWorldState (targetFundamental thm_diffrule_sum))
5 (!startSection Discover (def_diff def_diff_f thm_diffrule_sum)
6 (discover (def_diff def_diff_f thm_diffrule_sum)))
7 (!startSection Description (def_diff def_diff_f thm_diffrule_sum))
8 (!text discover.Description (def_diff def_diff_f thm_diffrule_sum))
9 (!endSection)

10 (!startSection Title (def_diff) (learnFundamentalDiscover (def_diff)))
11 (!startSection Prerequisites (def_diff) (learnPrerequisitesFundamentalsShortSection!
12 (def_diff)))
13 (!text discover.Prerequisites (def_diff))
14 (!insertResource def_diff_quot_FOS)
15 (!insertResource def_informal_limit)
16 (!endSection)
17 (!startSection Title (def_diff) (developFundamental (def_diff)))
18 (!text discover.Develop (def_diff))
19 (!insertResource def_diff)
20 (!insertResource note_diff)
21 (!dynamicTask illustrate! (def_diff))
22 (!endSection)
23 (!startSection Exercises (def_diff) (practiceSection! (def_diff)))
24 (!text discover.Practice (def_diff))
25 (!insertLearningService ExerciseSequencer TrainCompetencyLevel (def_diff))
26 (!dynamicTask train! (def_diff))
27 (!endSection)
28 (!startSection Connections (def_diff) (showConnectionsSection! (def_diff)))
29 (!text discover.Connect (def_diff))
30 (!insertLearningService CMap display (def_diff) (includeEdge1 isRequiredBy
31 includeEdge2 isA includeEdge3 inverseIsA includeCategory1 Definition
32 includeCategory2 Law computeNeighbourNodes 1.0))
33 (!endSection)
34 (!endSection)
35 (!startSection Title (def_diff_f) (learnFundamentalDiscover (def_diff_f)))
36 (!startSection Introduction (def_diff_f) (introduceWithSection! (def_diff_f)))
37 (!text discover.Introduction (def_diff_f))
38 (!insertResource cluso_diff_hiking)
39 (!endSection)
40 (!startSection Title (def_diff_f) (developFundamental (def_diff_f)))
41 ...
42 (!endSection)
43 (!startSection Title (thm_diffrule_sum) (learnFundamentalDiscover (thm_diffrule_sum)))
44 ...
45 (!startSection Title (thm_diffrule_sum) (developFundamental (thm_diffrule_sum)))
46 (!text discover.Develop (thm_diffrule_sum))
47 (!insertResource thm_diffrule_sum)
48 (!dynamicTask illustrate! (thm_diffrule_sum))
49 (!endSection)
50 (!startSection Proof (thm_diffrule_sum) (proveSection! (thm_diffrule_sum)))
51 (!text discover.Proof (thm_diffrule_sum))
52 (!insertResource prf_diffrule_diff_applet)
53 (!insertResource prf_diffrule_sum_applet)
54 (!insertResource prf_diffrule_sum)
55 (!endSection)
56 ...
57 (!endSection)
58 (!startSection Reflection (def_diff def_diff_f thm_diffrule_sum)
59 (reflect (def_diff def_diff_f thm_diffrule_sum)))
60 (!insertLearningService OLM display (thm_diffrule_sum) (competencyId competency))
61 (!endSection)
62 (!endSection)

Fig. 4.41. Parts of a plan generated by the course generator

4.7 Converting a Plan into a Course 95

section (line 12), followed by a references to the prerequisites (lines 13–14).
Dynamic tasks are inserted in line 20. When executed, the task will result in
a sequence of examples for the definition in this section (see the next section).
Another interesting case is line 24. There, a reference to a learning-support
service is inserted: an exercise sequencer, a component specialized in train-
ing the learner. A different service, a concept mapping tool is shown in lines
29–31. The final lines insert a reference to another learning-support service,
an Open Learner Model (olm) (line 59). The precise meaning of the param-
eters of these learning-support service is not relevant for the purpose of this
example, the important point is that they follow the general scheme of con-
taining the service name, method name, resource references, and potentially
additional parameters (as described in Section 4.6.3).

From a plan, a course represented as an omgroup is constructed in the
following way:

• !startSection triggers the opening of an omgroup element. For the title
generation, it uses the techniques described in section 4.9.4.

• !endSection inserts the closing tag of an omgroup element.
• !insertResource inserts the ref element that OMDoc uses for referenc-

ing to resources.
• !insertLearningService inserts the dynamicItem element that is used

to create links to learning supporting services.
• !text inserts a dynamicItem element that serves as a symbolic represen-

tation for text generation (see Section 4.9.2).
• !dynamicTask inserts a dynamicItem element that is used for dynamic

task expansion (see Section 4.6.5).
• Internal operators (marked with the prefix “!!”) serve jshop2’s internal

bookkeeping purposes and hence are ignored.

The following lines contain parts of the omgroup that is generated from
the plan shown in Figure 4.41. Due to xml’s verbosity, I included only the
first and last section, the complete course is contained in the appendix. The
first metadata element (lines 4–18) contains the title of the section in several
languages (lines 5–6), the task of this section (lines 7–13), and some adminis-
trative information (lines 14–17). Lines 24–28 contain the dynamic item from
which at a later stage a text will be generated that explains the purpose and
structure of this course. Then, the section is closed, and a new section con-
taining the prerequisites is opened. Lines 53–54 contain the first references
to educational resources in the proper sense of course generation: these two
resources will be included on the page and shown to the learner. The OMDoc

representation of a dynamic task is shown in the lines 71–73, and the dynamic
item representing the exercise sequencer is contained in the lines 88–91.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <omdoc xmlns:omd="http://www.mathweb.org/omdoc">
3 <omgroup id="4">
4 <metadata>

96 4 General Principles

5 <Title xml:lang="de">Begriffe kennenlernen</Title>
6 <Title xml:lang="en">Discover</Title>
7 <extradata>
8 <pedtask pedobj="discover">
9 <ref xref="def_diff" />

10 <ref xref="def_diff_f" />
11 <ref xref="thm_diffrule_sum" />
12 </pedtask>
13 </extradata>
14 <Creator xml:lang="en" role="edt">Activemath</Creator>
15 <Creator xml:lang="en" role="aut">N/A</Creator>
16 <Contributor xml:lang="en" role="trl">N/A</Contributor>
17 <Date xml:action="updated" xml:who="Activemath">2007-03-09T17:19:48</Date>
18 </metadata>
19 <omgroup>
20 <metadata>
21 <Title xml:lang="de">Überblick</Title>
22 <Title xml:lang="en">Overview</Title>
23 </metadata>
24 <dynamic-item type="text" servicename="NLG" queryname="Item.Discover.Description">
25 <ref xref="def_diff" />
26 <ref xref="def_diff_f" />
27 <ref xref="thm_diffrule_sum" />
28 </dynamic-item>
29 </omgroup>
30 <omgroup>
31 <metadata>
32 <Title xml:lang="de">Definition der Ableitung bzw.
33 des Differentialquotienten</Title>
34 <Title xml:lang="en">Definition of the derivative,
35 resp., differential quotient</Title>
36 <extradata>
37 <pedtask pedobj="learnFundamentalDiscover">
38 <ref xref="def_diff" />
39 </pedtask>
40 </extradata>
41 </metadata>
42 <omgroup>
43 <metadata>
44 <Title xml:lang="de">Vorwissen</Title>
45 <Title xml:lang="en">Prerequisites</Title>
46 <extradata>
47 <pedtask pedobj="learnPrerequisitesFundamentalsShortSection!">
48 <ref xref="def_diff" />
49 </pedtask>
50 </extradata>
51 </metadata>
52 <dynamic-item type="text" servicename="NLG"
53 queryname="Item.Discover.Prerequisites">
54 <ref xref="def_diff" />
55 </dynamic-item>
56 <ref xref="def_diff_quot_FOS" />
57 <ref xref="def_informal_limit" />
58 </omgroup>
59 <omgroup>
60 <metadata>
61 <Title xml:lang="de">Definition der Ableitung bzw.
62 des Differentialquotienten</Title>
63 <Title xml:lang="en">Definition of the derivative,
64 resp., differential quotient</Title>
65 <extradata>
66 <pedtask pedobj="developFundamental">
67 <ref xref="def_diff" />
68 </pedtask>
69 </extradata>
70 </metadata>
71 <dynamic-item type="text" servicename="NLG" queryname="Item.Discover.Develop">

4.7 Converting a Plan into a Course 97

72 <ref xref="def_diff" />
73 </dynamic-item>
74 <ref xref="def_diff" />
75 <ref xref="note_diff" />
76 <dynamic-item type="dynamicTask" servicename="tutorialControl"
77 queryname="illustrate!">
78 <ref xref="def_diff" />
79 </dynamic-item>
80 </omgroup>
81 <omgroup>
82 <metadata>
83 <Title xml:lang="de">Übungen</Title>
84 <Title xml:lang="en">Exercises</Title>
85 <extradata>
86 <pedtask pedobj="practiceSection!">
87 <ref xref="def_diff" />
88 </pedtask>
89 </extradata>
90 </metadata>
91 <dynamic-item type="text" servicename="NLG" queryname="Item.Discover.Practice">
92 <ref xref="def_diff" />
93 </dynamic-item>
94 <dynamic-item type="learningService" servicename="ExerciseSequencer"
95 queryname="TrainCompetencyLevel">
96 <ref xref="def_diff" />
97 </dynamic-item>
98 <dynamic-item type="dynamicTask" servicename="tutorialControl"
99 queryname="train!">

100 <ref xref="def_diff" />
101 </dynamic-item>
102 </omgroup>
103 <omgroup>
104 <metadata>
105 <Title xml:lang="de">Zusammenhänge</Title>
106 <Title xml:lang="en">Connections</Title>
107 <extradata>
108 <pedtask pedobj="showConnectionsSection!">
109 <ref xref="def_diff" />
110 </pedtask>
111 </extradata>
112 </metadata>
113 <dynamic-item type="text" servicename="NLG" queryname="Item.Discover.Connect">
114 <ref xref="def_diff" />
115 </dynamic-item>
116 <dynamic-item type="learningService" servicename="CMap" queryname="display">
117 <ref xref="def_diff" />
118 <queryparam property="includeEdge1" value="isRequiredBy" />
119 <queryparam property="includeEdge2" value="isA" />
120 <queryparam property="includeEdge3" value="inverseIsA" />
121 <queryparam property="includeCategory1" value="Definition" />
122 <queryparam property="includeCategory2" value="Law" />
123 <queryparam property="computeNeighbourNodes" value="1.0" />
124 </dynamic-item>
125 </omgroup>
126 </omgroup>
127 ...
128 <omgroup>
129 <metadata>
130 <Title xml:lang="de">Rückblick</Title>
131 <Title xml:lang="en">Looking Back</Title>
132 <extradata>
133 <pedtask pedobj="reflect">
134 <ref xref="def_diff" />
135 <ref xref="def_diff_f" />
136 <ref xref="thm_diffrule_sum" />
137 </pedtask>
138 </extradata>

98 4 General Principles

139 </metadata>
140 <dynamic-item type="learningService" servicename="OLM" queryname="display">
141 <ref xref="thm_diffrule_sum" />
142 <queryparam property="competencyId" value="competency" />
143 </dynamic-item>
144 </omgroup>
145 </omgroup>
146 </omdoc>

Therefore, the resulting OMDoc grouping consists of nested sections
with the leaves being pointers to educational resources. As described in Sec-
tion 2.3.1, there exist several e-learning standards that represent similar struc-
tures, the most prominent being ims cp, ims ld, and ims ss.

ims ss with its explicit control of the navigation process imposes a rather
behavioristic pedagogical approach on the learning process, and thus might
raise problems when employed in constructivist settings. On the other hand,
ims ld describes ordered activities in learning and the roles of the involved
parties. It is a very broad approach, hard to implement, and not well suited for
representing courses down to the level of educational resources. In contrast, the
purpose of ims cp is the exchange of content and organization of the content.
Its organization element can be mapped directly to an OMDoc omgroup
element and vice versa, and the ims cp item element can represent references
to content as well as to learning-supporting services. Therefore, ims cp is a
sensible output format of Paigos, and the Web service interface of Paigos

(described in Section 6.3) exports this format. Since the resulting course does
not include the “physical” resources themselves but only references, the output
is not a complete content package, but only its manifest.

Fig. 4.42. A course generated for the scenario “Discover”

4.8 Generating Structure and Adaptivity: Dynamic Tasks 99

Figure 4.42 shows what the course of Figure 4.41 looks like in a learning
environment, in this case ActiveMath. The shown page is the second page
of the course, which contains the prerequisites (only one of which is shown in
the screenshot).

4.8 Generating Structure and Adaptivity: Dynamic
Tasks

Course generation faces a dilemma: on the one hand it makes sense from
a pedagogical point of view to generate a complete course immediately after
receiving the learner’s request, instead of selecting and presenting one resource
after another, as it is done in dynamic content sequencing. The learner sees
the complete sequence of content that leads him toward his learning goal, how
the content is structured and can freely navigate, say, to have a look at the
final fundamentals.

On the other hand, if a long time-span separates the generation and view-
ing of a page, assumptions about the learner made during course generation
may have become invalid, resulting in an inadequate course. Hence, if pos-
sible, the course generating should be dynamic in the sense to use the most
up-to-date information about the learner that is available.

In AI, execution monitoring and replanning offers a framework that can
cope with situations in which assumptions made during planning can change
while the plan is executed. An execution monitor constantly monitors the
current world state and if it changes in a way that makes preconditions of an
operator invalid, the execution monitor triggers replanning, i. e., tries to find
a different sequence of operators that achieve the goal ([157], p. 441).

However, this framework cannot be applied to course generation as realized
in Paigos. Here, the plan is completely applied before the course is presented,
in fact, applying the plan produces the course. One alternative would be to
keep the plan, to associate a planning step with the parts of the course it
creates, and to use some mechanism to re-plan those parts affected by the
changes in the world state. Some of these requirements are already provided
by Paigos, for instance, sections contain information about the task context
in which they were created. Yet, designing such a reactive planning algorithm
would be a rather complex task, especially since jshop2 does not provide any
facilities for it.

In this volume, I propose a different solution for this problem of dynamic
course generation, based on dynamic subtask expansion. In this solution, plan-
ning may stop at the level of specially marked primitive tasks, called dynamic
tasks. Each dynamic task encloses a pedagogical task t and is inserted into
the course instead of t. Since a dynamic task is primitive, it counts as directly
achieved by its operator and is not further expanded (see Section 4.6.5 for a
description of the operators).

100 4 General Principles

Later, at presentation time, when the learner first visits a page that con-
tains a dynamic task, the task t it encloses is passed to the course generator.
Then, the course generator assembles the sequence of resources that achieve
t. The resulting identifiers of educational resources replace the task in the
course structure with specific instances of educational resources (hence, when
the page is revisited, the elements do not change, which avoids confusion of the
learner reported in [30]). This means a course is partly static, partly dynamic,
and thus the goal of presenting the complete course to the learner while still
being able to adapt is realized.

An important aspect of dynamic tasks is that they can be used by human
“course generators”, i. e., authors that manually compose courses: an author
can define a course where parts of the course are predefined and others dy-
namically computed, taking the learner model into account. In this way, an
author can profit from the best of both worlds: she can compose parts of the
course by hand and at the same time profit from the adaptive features of the
course generator.

The following example shows that the above described realization of dy-
namic tasks is too simplistic:

Example 4.20. Let the current course contain references to the definition
def slope and the example exa slope, which is for def slope. Let d be a
dynamic task that selects an example for the given definition, t=(illustrate
(def slope)). If the task is planned for without any further restrictions, it
might happen that the selected example will be exa slope, and hence will be
contained in the course twice. This would not have happened if the course was
generated in one shot since then the course generation methods would have
ensured that the selected example did not occur previously in the course by
testing against the word state.

As a consequence, dynamic task expansion needs to take the current course
into account. The underlying algorithm uses a translation from a course, i. e.,
an omgroup element, to a world state: each reference to a resource r results
in a logical atom (inserted r), which is inserted into the world state the
course generator is started with.

Dynamic task expansion offers an additional benefit: since the course gen-
eration stops at a higher level and does not expand all subtasks, the planning
process is much faster. The technical evaluations in Section 7 show an increase
of performance up to a factor of ten.

4.9 Generation of Narrative Bridges and Structure

The courses generated by Paigos consist of structured sequences of refer-
ences to educational resources. The same resource can be used in a multitude
of courses and support the achievement of various learning goals. This re-use

4.9 Generation of Narrative Bridges and Structure 101

of educational resources imposes constraints on their content: in comparison
to a standard textbook, absolute references to previous or latter content have
to be avoided, because it is impossible to tell in advance whether the refer-
enced educational resources will be presented at all and at which positions
they will be presented. For the same reason, authoring introductions to a
course or summaries is difficult: at authoring time, the educational resources
contained in a particular course are unknown. But introductions, summaries
and similar texts have pedagogical purposes that is relevant for a successful
learning process, and which a simple sequence of educational resources lacks.
Yet, during course generation information about the current learning goals
and the used educational resources is available. In this section, I will show
how to use that information in order to extend a sequence of educational
resources with bridging texts that provide supportive information about a
course to a learner.

The bridging texts we will discuss here serve the following purposes: firstly,
they explain the purpose of a course or a section at a higher level of abstraction
than the level of educational resources. Because they make the structure of a
course explicit, they provide cues that the learners can use to structure their
own learning process. Secondly, they serve to improve the coherence and the
readability of a course. By providing texts that link different sections, they
provide coherence that a mere sequence of educational resources might lack.

This section starts with empirical findings that provide evidence for the
need of bridging texts. Then, the realization of bridging texts is described from
the perspective of the course generation planner, which generates symbolic
representations of bridging texts. These representations can be transformed
into text in many ways, depending on the learning environment the course is
used in (an example implementation is described in the chapter about integra-
tion, in Section 6.2.4). The final part of this section explains how additional
structural information is provided through the generation of section titles.

4.9.1 Empirical Findings

Empirical studies suggest that learning of fundamentals can be improved by
referencing other content and by providing explanations of the content to
come on a higher level of abstraction. A well-known support technique for
learning are advance organizers:

[Advance] organizers are introduced in advance of learning itself, and
are also presented at a higher level of abstraction, generality, and in-
clusiveness; and since the substantive content of a given organizer or
series of organizers is selected on the basis of its suitability for ex-
plaining, integrating, and interrelating the material they precede, this
strategy simultaneously satisfies the substantive as well as the pro-
gramming criteria for enhancing the organization strength of cognitive
structure ([9], p. 81).

102 4 General Principles

Cognitive learning theories (as opposed to the behavioristic information
transmission paradigm), provide additional support for the relevance of prop-
erly preparing the student’s mind. According to Mayer [95], multimedia learn-
ing needs to consider the following:

1. selection of the important information in the lesson (for instance by pro-
viding overviews and summaries);

2. management of the limited capacity in working memory to allow the re-
hearsal needed for learning (for instance by providing structure such that
chunks take up less space in working memory);

3. integration of auditory and visual sensory information in working mem-
ory with existing knowledge in long-term memory by way of rehearsal in
working memory. This includes constructing a knowledge structure in the
mind.

4. retrieval of knowledge and skills from long-term memory into working
memory when needed later (which can be supported by providing a clear
structure).

5. management of all these processes via meta-cognitive skills, which includes
the skill of a learner of being able to structure the learning process on his
own.

In Paigos, the goal of narrative bridges is to augment the dynamically gen-
erated courses with texts that set the student’s mind (similar to an advanced
organizer), support the students’ understanding of the structure and of the
learning goals, and make transitions between educational resources smoother.

The literature provides evidence that bridging texts should be concisely
formulated. Summarizing research in user interface design, Nielsen [129] sug-
gests that ”[d]ialogues should not contain information which is irrelevant or
rarely needed. Every extra unit of information in a dialogue competes with
the relevant units of information and diminishes their relative visibility”. Sim-
ilarly, Shneiderman and Plaisant [166] argues to reduce short-term memory
load: “[t]he limitation of human information processing in short-term mem-
ory requires that displays be kept simple, multiple page displays be con-
solidated . . . ”. The importance of reducing the cognitive load also stressed
by Kearlsey [77] in the domain of hypertext technology. Additional evidence
for the importance of concise texts is provided by research on feedback: van der
Linden [192] analyzed the usage of feedback texts during problem solving and
reached the conclusion that “[f]eedback of more than three lines was hardly
ever read to the end”.

The results of these studies are taken into account for the generation of
bridging texts in Paigos. The generation of bridging texts happens as follows.

1. During the course generation, specific methods trigger the application of
operators. The instantiated operators encode sufficient information for a
later text generation.

4.9 Generation of Narrative Bridges and Structure 103

2. The resulting plan serves as the basis to generate a table of contents. The
information contained in the operator applications of the previous stage
is used to create symbolic representations. Stage 1 and 2 are described
below.

3. The final stage uses the symbolic representation to generate text. This
is “outside” the course generator and part of the learning environment
the course is presented in. An exemplary realization in ActiveMath is
described in the chapter on integration in Section 6.2.4.

4.9.2 Operator and Methods for Text Generation

One goal of the narrative bridges is to convey to the learner the structure of
a course and the purpose of the educational resources contained in a page.
Therefore, the texts are inserted at the level of pages. However, course gener-
ation aims at avoiding duplication of educational knowledge as far as possible
and to reuse existing knowledge, and thus different scenarios use partly the
same, partly different methods and operators. Therefore, in different scenar-
ios, the same methods may serve to achieve different goals. For instance, the
example selection in the scenario discover is done by the same methods as
in the scenario rehearse. Yet, the examples serve different purposes: in the
former case, the examples are used to provide illustrative applications of a
new fundamental; in the latter case, they are used to remind the learner how
to apply the fundamental. As a consequence, the respective bridging texts
should differ, depending on the scenario.

1 (:operator (!text ?type ?parameters)

2 ()

3 ()

4 ()

5)

6

7 (:method (text ?type ?parameters)

8 ((scenario ?var))

9 ((!text (call Concat ?var "." ?type) ?parameters))

10)

Fig. 4.43. !text and text generate symbolic text representations

The operator !text (the upper operator in Figure 4.43, it was briefly
described earlier) encodes the information later used to create a symbolic rep-
resentation of a bridging text. This operator has no preconditions, delete and
add lists. Thus, it can always be applied and does not modify the planning
world state. The variables in the head are used to specify the type of text
(which consists of the current scenario and the specific type of bridging text)

104 4 General Principles

and ?parameters stands for a list of terms that can provide additional infor-
mation. In the current implementation of Paigos, these are the identifiers of
the fundamentals currently in focus.

(:method (descriptionScenarioSection ?parameters)

MethodDescriptionScenarioSection

()

((!startSection Description ?parameters)

(text Description ?parameters)

(!endSection)

)

)

Fig. 4.44. descriptionScenarioSection inserts descriptions of scenarios

The method displayed in Figure 4.44 serves to generate descriptions of
scenarios. In the current version of Paigos, these description are encapsulated
in their own section and the method provides a convenient abbreviation to
keep other methods less cluttered.

Example 4.21. The following operator instance triggers the generation of a
symbolic representation of a text that is an introduction for a section about
the “definition of the derivative quotient” in the scenario discover: (!text
discover.introduction (def diff)).

This operator requires to provide the scenario name in the variable ?type.
However, because most of the time the scenario will not change during course
generation (the exceptions will be explained in the next chapter), things can
be simplified. The second method in Figure 4.43 wraps the call of the opera-
tor and automatically inserts the scenario name (line 8), thereby simplifying
methods that use text generation.

Example 4.22. The following method illustrates the creation of a bridging text.
The method adds a new section that introduces a fundamental. The section
consists of an explanatory bridging text (highlighted), a motivation and po-
tentially some introductory examples. The above method is applicable to the
highlighted task.

(:method (introduceWithSection! ?c)

;; preconditions

()

;; subtasks

(;; Start a new section for the motivation

(!startSection Introduction (?c))

(text introduction (?c))

(motivate! ?c)

4.9 Generation of Narrative Bridges and Structure 105

(introductionExamplify ?c)

(!endSection)

)

)

Example 4.23. The application of the method MethodText on the following
task during the scenario discover results in the task shown in Example 4.21.

(introduceWithSection! (def diff))

In some cases, a more precise control of the type of generated texts is
needed. Methods can achieve this by using the operator !!changeScenario
to modify the atom that represents the scenario. This gives methods the pos-
sibility to control the texts that will be generated. Take, e. g., the scenario
rehearse in which two different sections present a sequence of examples. The
first example section serves to remind the learner how to apply the fundamen-
tal. The second section, placed after an exercise section, provides additional
examples. Consequently, even if both times the task is the same, namely (text
illustrate termlist), the texts have to be different, which can be achieved
by changing the scenario.

4.9.3 Symbolic Representations of Dynamic Text Items

After a plan was found, its operators are applied and generate a table of
contents. The entries for bridging texts are realized by dynamic items. Fig-
ure 4.45 contains a schema of a dynamic item for texts. The actual application
replaces scenario , type and id 1,...,id n with the terms that instantiate
the variables of the head of the operator, which are ?scenario, type and
?parameters =id 1,...,id n , respectively. The dynamic items serve as the
symbolic representation needed for text generation.

<dynamic-item

type="text" servicename="NLGGenerator" queryname="scenario.type ">

<ref xref="id 1 " />

...

<ref xref="id n " />

</dynamic-item>

Fig. 4.45. A schema of dynamic items for bridging texts

Example 4.24. The dynamic item created by the task of Example 4.21 looks
as follows:

106 4 General Principles

<dynamic-item

type="text" servicename="NLGGenerator"

queryname="discover.introduction">

<ref xref="def_diff"/>

</dynamic-item>

In Section 6.2.4, I will describe how texts are be generated from these
symbolic representations.

4.9.4 Generation of Structure Information

The course generator generates a hierarchically structured course that consists
of nested sections. Each section requires a title that is used for referencing and
displayed when the course is presented to the learner. Ideally, a title concisely
indicates the content and purpose of the section it describes. This way, it can
provide to the learner an overview on the structure of a course.

The generation of section titles follows the pattern of bridging texts gen-
eration: the methods that add tasks for creating new sections “know” the
learning goals to be achieved within a section and include this information
into the tasks.

(:operator (!startSection ?type)

()

()

()

)

(:operator (!startSection ?type ?parameters)

()

()

()

)

(:operator (!startSection ?type ?parameters ?task)

()

()

()

)

(:operator (!endSection)

()

()

()

)

Fig. 4.46. !startSection and !endSection create structure

4.9 Generation of Narrative Bridges and Structure 107

The three upper operators in Figure 4.46 (repeated from Section 4.6.2)
start a new section. Since they do not have preconditions, they can always
be applied. The variables in the head specify the type of the title and addi-
tional parameters, such as the identifiers of the fundamentals presented in the
section.

Example 4.25. The following tasks are generated while planning a course for
the fundamental “definition of the average slope between two points”:

(!startSection elementTitle (def_diff))

... some other tasks ...

(!startSection Introduction (def_diff))

... some other tasks ...

In contrast to bridging texts, titles need to be generated during the plan
application, at the time the course is generated, rather than later by the
learning environment that presents the course, since the standards used for
the representation of table of contents, such as OMDoc or ims cp require the
titles to be static character strings.

Paigos possesses a selection of phrases, i. e., a set of keywords and cor-
responding texts (see Figure 4.47 for some examples). Each type of title cor-
responds to a phrase. At the time the table of content is generated from the
plan, the corresponding texts are inserted as titles sections. If phrases are
available in several languages, then a language specific title is generated for
each language. The result is a multi-lingual educational resource. Which lan-
guage is presented to the learner is determined by the learning management
system at presentation time.

text.NLGGenerator.Title.Introduction=Introduction

text.NLGGenerator.Title.Exercises=Exercises

text.NLGGenerator.Title.Examples=Examples

text.NLGGenerator.Title.Connections=Connections

text.NLGGenerator.Title.Reflection=Looking Back

text.NLGGenerator.Title.Prerequisites=Prerequisites

Fig. 4.47. A selection of phrases for title generation

The only exception is the text type elementTitle, whose parameters have
to consist of a list with only a single resource identifier. This text type uses the
title of the referenced educational resource for the generated title. Typically,
it is used to convey that the nested sections all refer to the same fundamental.

Example 4.26. The tasks in Example 4.25 results in the OMDoc table of
contents in Figure 4.48. The title of the first section uses the title of the
referenced educational resource as its own title (lines 5–6 in Figure 4.48). The

108 4 General Principles

1 <omgroup>

2 <metadata>

3 <Title xml:lang="de">Definition der Ableitung

4 bzw. des Differentialquotienten</Title>

5 <Title xml:lang="en">Definition of the derivative,

6 resp., differential quotient</Title>

7 ...

8 </metadata>

9 <omgroup>

10 <metadata>

11 <Title xml:lang="de">Vorwissen</Title>

12 <Title xml:lang="en">Prerequisites</Title>

13 ...

14 </metadata>

15 ...

16 </omgroup>

17 ...

18 </omgroup>

Fig. 4.48. Examples for generated section titles

title of the second section is taken from the phrases (line 12). Figure 4.49
shows a html rendering of a table of contents.

4.10 Summary

This chapter laid the foundations of Paigos and described the AI techniques
used in this volume: ontological modeling to represent the types of educa-
tional resources the course generator reasons about, a mediator architecture
and ontology mapping to access resources distributed in distinct repositories,
and HTN axioms, operators and methods that provide a basic set of func-
tionality to perform course generation. The following chapter describes how
these axioms, operators and methods are used for formalizing several course
generation scenarios.

4.10 Summary 109

Fig. 4.49. A table of contents with generated section titles

5

Course Generation in Practice: Formalized
Scenarios

This chapter puts the general techniques described in Chapter 4 to use. I de-
scribe several course generation scenarios: those in the first part of this chapter
are based on a moderate constructivist competency-based approach and were
developed in close collaboration with experts for mathematics education at
the Mathematical Institute of Ludwig-Maximilians-University Munich. The
scenario in the second part of this chapter is based on guidelines from instruc-
tional design.

To keep the following description in reasonable length, I will omit those
methods and operators that are only slight variations of other, previously
explained methods.

5.1 Moderate Constructivist Competency-Based
Scenarios

The work presented in this chapter was performed as part of the EU FP6
project LeActiveMath, which developed an innovative, Web-based, intel-
ligent, multi-lingual e-learning system for mathematics. One central compo-
nent of LeActiveMath is the course generator described in this volume. The
pedagogical knowledge formalized in the course generator was developed in
cooperation with Marianne Moormann and Christian Groß, two members of
the team of Prof. Reiss at the Mathematical Institute of Ludwig-Maximilians-
University Munich. We identified six different learning scenarios that typically
arise in a learning process. These scenarios were informally modeled using di-
agrams and natural language. As an example, a diagram compiled for the
scenario “discover” is illustrated in Figure 5.1. The scenarios were modeled
down to the level of selection of educational resources. In a final step, these
descriptions were formalized using the HTN framework. The resulting for-
malization is described in this chapter. I will, however, start with a section
discussing the underlying pedagogy and potential conflicts with course gener-
ation.

C. Ullrich: Courseware Generation for Web-Based Learning, LNAI 5260, pp. 111–167, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

112 5 Course Generation in Practice: Formalized Scenarios

reflection

connections & transfer

practice

develop concepts

introduction

Open Learner Model

�

�

�

�

�

theorems, lemmata, remarks

�

�

�

�

proof

�

�

�

�

exercise1, exercise2, exercise3

�

�

�

�
�

example*

�

�

�

�

�

explanation

�

�

�

�
�

�

definition

�

�

�

�

�

�

motivation, problem,

�

�

�

�

�

examples*

�

�

�

�

�

prerequisites

�

�

�

�

Fig. 5.1. A diagram illustrating an informal modeling of the scenario “discover”

5.1.1 Course Generation and Constructivism – a Contradiction?

The pedagogy underlying LeActiveMath is based on moderate construc-
tivism. Hence, learners have to play an active role and are to a large ex-
tent responsible for the outcome of their learning process. As a result, the
course generation scenarios do not implement the knowledge “transmission”
paradigm but aim at supporting the students in structuring their learning
activities and developing strategic competence. Therefore, the main goals of
the pedagogical scenarios developed in LeActiveMath are that students are
to become autonomous and self-regulated learners.

In addition, the scenarios implement a competency-based approach. Com-
petency-based pedagogy claims that learning mathematics should not only
aim at solving a problem but also at thinking mathematically and arguing
about the correctness or incorrectness of the problem solving steps and in-
volved methods, to perform simple and complex computations, etc.

5.1 Moderate Constructivist Competency-Based Scenarios 113

In LeActiveMath, we identified six major learning goals and used them
as a basis to define the scenarios. They refer to typical learning phases, like
introduction or practice as described, e. g., by Zech [215], p. 181ff. Each sce-
nario determines the basic structure of a course, for instance, by prescribing
that the presentation of an example should follow the presentation of a defini-
tion. The scenarios are adaptive, that is, different resources can be selected by
taking information from the learner model into account, such as the learner’s
motivational state or his success in solving previous exercises.

Course generation selects, orders, and structures educational resources.
Thus it performs a range of activities that a learner might have performed
on her own. Does this contradict the constructivist paradigm that knowledge
is and has to be constructed by the individual? We argue that it does not:
constructivism does not imply to drop the learner in a labyrinth of educational
resources and to let her find out a way on her own. Instead, providing structure
and selection as done by Paigos is beneficial to learning:

Studies show that students rarely develop explicit learning strategies on
their own: “[t]he majority of learners is (still) not prepared for this [learning
with computer technology]. Therefore an efficient self-guided usage of the of-
fered learning opportunities cannot take place” ([179], p. 110, translated by
the author). He continues: “the first positive effects regarding the acquisi-
tion of knowledge are shown by learners with adequate learning requirements
(e.g., possessing previous knowledge, a good spatial sense, appropriate learn-
ing strategies)”. According to Tergan, disorientation and cognitive overload
are the principal obstacles of self-regulated learning in technology-supported
learning.

In a related study, Prenzel et al. [147] show that in particular low-achieving
students may benefit from content organized according to pedagogical princi-
ples, a finding that is supported by other PISA studies [137].

These studies provide evidence that students must learn to self-regulate
their learning process since most of them do not posses this skill. Conse-
quently, providing structured content is an important requirement for course
generation since then the generated courses provide examples of how to deal
with the offered content. They show how the material can be structured or
ordered depending on the educational objectives.

It is important to note that although the content is pre-structured, the
generated courses do not impose any restrictions on the learner in contrast to
standards as ims ss. If the learning environment that presents the courses does
not add limitations, then the learner is never constrained in his navigation. He
can freely browse through a course and has full access to the complete content
available via the search facility. Schulmeister [162], p. 151–162 showed in his
comprehensive meta-review that placing the locus of control in the hands of
the learner is one of the few measures in technology-supported learning that
has repeatedly proven to increase motivation.

In the following, I describe the different scenarios formalized in LeAc-

tiveMath. The first two sections cover the selection of the exercises and

114 5 Course Generation in Practice: Formalized Scenarios

examples, which is shared across the different scenarios. Since all methods
that select auxiliaries perform the selection with respect to a fundamental f,
I will often omit this fact from the description of the methods.

5.1.2 Selecting Exercises

The methods presented in this section implement the pedagogical knowledge
of selecting exercises that are “appropriate” for the learner. The exact meaning
of “appropriate” differs depending on the individual learner. For instance, if
he is highly motivated then a slightly more difficult exercise might be selected.

The most relevant factors are the educational level of the learner1 and his
current competency level. In general, the learning context of an educational
resource (of all resources, not only exercises) should always correspond to the
educational level of the learner. Otherwise, it may be inadequate, e. g., either
too simple or too difficult (e. g., think of a second year university student
being presented a definition for elementary school).

The competency level of a resource measures how far a specific competency
has to be developed by the student in order to solve/understand the particular
exercise/example with a certain probability. In most cases, resources presented
to the learner should have a competency level that corresponds to the learner’s
since these are the resources he is able to master with a high probability. In
some situations resources with a higher competency level need to be selected,
e. g., when aiming at increasing the competency level.

Most of the following methods do not make use of the difficulty level of
a resource. This is caused by the competency-based approach in LeActive-

Math. There, the competency level takes precedence over the difficulty level,
and the difficulty level allows differentiating between resources at the same
competency level, which is only rarely required in the LeActiveMath sce-
narios.

5.1.2.1 Selecting Exercises for a Fundamental

The task that governs exercise selection is (trainWithSingleExercise! f) ,
which triggers the insertion of an exercise for the fundamental f . All methods
that formalize the knowledge of how to select an exercise follow a same basic
scheme, which I will explain using the method in Figure 5.2. In short, the
method specifies that if a learner is highly motivated, then it inserts a subtask
that selects an exercise of the next higher competency level. This method is
based on the strong positive correlation between motivation and performance
[144]: with increasing motivation, performance increases, too (and vice versa).

1 Recall that the learner has reached an “educational level”, while an educational
resource was written for a “learning context”. The values of both properties cor-
respond, i. e., for each educational level there exists the corresponding learning
context.

5.1 Moderate Constructivist Competency-Based Scenarios 115

1 (:method (trainWithSingleExercise! ?c)

2 (;; preconditions

3 (learnerProperty hasMotivation ?c ?m)

4 (call >= ?m 4)

5 (learnerProperty hasField ?field)

6 (learnerProperty hasEducationalLevel ?el)

7 (learnerProperty hasCompetencyLevel ?c ?cl)

8 (equivalent (call + 1 ?cl) ?ex_cl)

9 (assign ?unsortedExercises

10 (call GetResources

11 ((class Exercise)

12 (relation isFor ?c)

13 (property hasLearningContext ?el)

14 (property hasCompetencyLevel ?ex_cl)

15 (property hasField ?field))))

16 (sortByAlreadySeen ?exercises ?unsortedExercises)

17 (assignIterator ?exercise ?exercises)

18)

19 (;; subtask

20 (insertWithVariantsIfReady! ?exercise ?c)

21)

22)

Fig. 5.2. Example of a method for trainWithSingleExercise

In the figure, lines 3–8 prepare the ground for selecting the exercise (all
axioms and operators used in the method were explained in Chapter 4).
The first two lines (lines 3–4) specify the condition under which the method
can be applied, in this case, if the learner is highly motivated. The axiom
learnerProperty binds the current motivation represented by a number be-
tween 1 and 4 to the variable ?m (line 3). The call expression in line 4 tests
whether ?m is greater or equal to 4.2 The following lines 5–8 collect informa-
tion about the learner used to specify the metadata constraint, i. e., the field
of interest of the learner (line 5), his educational level (line 6), and his com-
petency level (lines 7–8). Since the competence level of a learner is given as a
integer between 1 and 4, but the metadata of the resources use keywords, the
keyword that corresponds to the integer has to be retrieved using an axiom
(line 8). In addition, the integer value is increased by 1, since the exercise
should be of a higher competence level.3 The information collected up to now
is used to instantiate a mediator request. The request includes the constraints

2 In theory, it would be sufficient to test whether ?m is equal to 4, the highest
possible value. However, due to technical reasons, it is necessary to test greater
or equal.

3 In case the learner has reached the highest competence level, increasing the value
has no effect (as does decreasing the competency level below 1.)

116 5 Course Generation in Practice: Formalized Scenarios

that the resources have the type exercise (line 11) and that they are for f

(line 12). In lines 10–15, the request is sent to the mediator. If there exist any
educational resources that fulfill the constraint, then they are bound to the
variable ?unsortedExercises in line 9. Line 16 sorts the list and moves any
not yet seen resources to the front of the list. The axiom assignIterator
causes to iterate through the list of exercises (line 17), and the subtask of
the method inserts the first exercise that the learner is ready to see (line 20).
If there is such an exercise, it is inserted and all its variants are marked as
inserted. Otherwise, if none of the exercises bound to ?exercises can be in-
serted or no exercises was found at all, then the planning algorithm backtracks
and applies the next possible operator or method.

(learnerProperty hasMotivation ?c ?m)

(call >= ?m 4)

(learnerProperty hasField ?field)

(learnerProperty hasEducationalLevel ?el)

(learnerProperty hasCompetencyLevel ?c ?cl)

(equivalent (call + 1 ?cl) ?ex_cl)

Fig. 5.3. Selecting an exercise, high motivation

In the following explanations of methods, I will often show only those parts
of the methods that vary (besides the call to the mediator, which varies, too).
As an example, the relevant lines of the method of Figure 5.2 (lines 3–8) are
shown in Figure 5.3.

1 (learnerProperty hasMotivation ?c ?m)

2 (call <= ?m 1)

3 (learnerProperty hasField ?field)

4 (learnerProperty hasEducationalLevel ?el)

5 (learnerProperty hasCompetencyLevel ?c ?cl)

6 (equivalent (call - ?cl 1) ?ex_cl)

Fig. 5.4. Selecting an exercise, low motivation

The method in Figure 5.3 is the first method evaluated for the exer-
cise selection triggered by the task trainWithSingleExercise!. The second
method is illustrated in Figure 5.4. In case the learner exhibits a low moti-
vation (lines 1–2), then an exercise of a lower competence level (lines 5–6) is
presented if available.

Otherwise, the course generator tries to insert an exercise whose metadata
corresponds directly to the learner’s characteristics: if available, an exercise

5.1 Moderate Constructivist Competency-Based Scenarios 117

(learnerProperty hasField ?field)

(learnerProperty hasEducationalLevel ?el)

(learnerProperty hasCompetencyLevel ?c ?cl)

(equivalent ?cl ?ex_cl)

Fig. 5.5. Selecting an exercise, adequate competence level

is selected that has the learner’s field and corresponds to the learner’s edu-
cational and competency level (Figure 5.5). The subsequent methods relax
the preconditions, starting by omitting the constraint on the field value (see
Figure 5.6).

(learnerProperty hasEducationalLevel ?el)

(learnerProperty hasCompetencyLevel ?c ?cl)

(equivalent ?cl ?ex_cl)

Fig. 5.6. Selecting an exercise, any field

(learnerProperty hasField ?field)

(learnerProperty hasEducationalLevel ?el)

(learnerProperty hasCompetencyLevel ?c ?cl)

(equivalent (call - ?cl 1) ?ex_cl)

Fig. 5.7. Selecting an exercise, lower competence level

(learnerProperty hasEducationalLevel ?el)

(learnerProperty hasCompetencyLevel ?c ?cl)

(equivalent (call - ?cl 1) ?ex_cl)

Fig. 5.8. Selecting an exercise, lower competence level, any field

If still no adequate exercise was found, the methods in Figure 5.7 and 5.8
search for exercises on the next lower competency level, first with and then
without the field constraint. The rationale is that it is better to present a
exercise with a too low competency level than one of a different learning
context since resources from a different learning context might be harder to
understand than “easier” resources.

118 5 Course Generation in Practice: Formalized Scenarios

1 (learnerProperty hasField ?field)

2 (learnerProperty hasMotivation ?c ?m)

3 (call >= ?m 4)

4 (learnerProperty hasCompetencyLevel ?c ?cl)

5 (equivalent (call + 1 ?cl) ?ex_cl)

6 (learnerProperty hasAllowedEducationalLevel ?aels)

7 (assignIterator ?el ?aels)

Fig. 5.9. Selecting an exercise, high motivation, lower educational level

The next set of methods repeats the approach described in the methods
illustrated in Figures 5.3 to 5.8 but relax the constraint on the educational
level. The learner property hasAllowedEducationalLevel returns a list of
all educational levels that the current user is able to understand, besides his
original one. For instance, resources for university first year student are “al-
lowed” for second year university students. The precise meaning of this learner
property is handled by the part of the learner model that stores the learner’s
preferences. Since these six methods are analogous to the above methods, only
one is displayed (see Figure 5.9). The difference to the previous methods is
that the lines 6–7 cause the method to iterate over all allowed educational lev-
els: in case no suited exercise is found for the first allowed educational level,
then backtracking causes to try the next one, until either an exercise could be
inserted or backtracking leads to apply the next method. However, no further
methods for exercise selection that use the task (trainWithSingleExercise!
f) exist. Thus, if no exercise was found at this place, then the task cannot
be achieved.

5.1.2.2 Selecting Exercises for a Fundamental with Additional
Constraints

Sometimes it is necessary to search for exercises that are of a specific compe-
tency and difficulty level. Hence, a set of methods equivalent to those described
in the previous section exists that adds constraints on difficulty and compe-
tency. A complete example is shown in Figure 5.10. The displayed method
is analogous to the method show in Figure 5.2, but uses the values of diffi-
culty and competency given as parameters to further restrict the mediator
query (lines 16–17). To keep the volume within reasonable length, I omit the
remaining methods from the description.

5.1.2.3 Least Constrained Exercise Selection

A method for least constrained exercise selection is shown in Figure 5.11. This
method is applicable on the task atom trainWithSingleExerciseRelaxed!.
This task serves as a fallback task in case none of the above methods could

5.1 Moderate Constructivist Competency-Based Scenarios 119

1 (:method (trainWithSingleExercise! ?c ?difficulty ?competency)

2 (

3 (learnerProperty hasMotivation ?c ?m)

4 (call >= ?m 4)

5 (learnerProperty hasField ?field)

6 (learnerProperty hasEducationalLevel ?el)

7 (learnerProperty hasCompetencyLevel ?c ?cl)

8 (equivalent (call + 1 ?cl) ?ex_cl)

9 (assign ?unsortedExercises

10 (call GetResources

11 ((class Exercise)

12 (relation isFor ?c)

13 (property hasLearningContext ?el)

14 (property hasCompetencyLevel ?ex_cl)

15 (property hasField ?field)

16 (property hasDifficulty ?difficulty)

17 (property hasCompetency ?competency))))

18 (sortByAlreadySeen ?exercises ?unsortedExercises)

19 (assignIterator ?exercise ?exercises)

20)

21 (

22 (insertWithVariantsIfReady! ?exercise ?c)

23)

24)

Fig. 5.10. Selecting an exercise, for specific difficulty and competency

be applied but presenting a potentially slightly inadequate exercise is pre-
ferred over presenting no exercise at all. This method omits the constraint
on the competency level and traverses all potential educational levels. In ad-
dition, it does not check whether the learner is “ready” to understand the
exercise but directly inserts it if it was not already inserted (using the task
insertResourceOnce!).

5.1.2.4 Selecting a Sequence of Exercises That Covers All
Competencies

Figure 5.12 contains parts of the method that selects a sequence of exercises.
The exercises cover all competencies as far as there exist adequate exercises
for the competencies. The rationale of this method was to implement what
Reinmann-Rothmeier and Mandl [151] call “learning in multiple contexts”:
present new content in different application situations.

First, the method tests whether there exists a resource that will ensure
that any of its subtasks are achievable, otherwise the method is not applica-
ble. Although this test is not required technically speaking, it increases the

120 5 Course Generation in Practice: Formalized Scenarios

(:method (trainWithSingleExerciseRelaxed! ?competency ?c)

(

(learnerProperty hasAllowedEducationalLevel ?aels)

(learnerProperty hasEducationalLevel ?edl)

(assignIterator ?el (?edl . ?aels))

(assign ?unsortedExercises

(call GetResources

((class Exercise)

(relation isFor ?c)

(property hasLearningContext ?el)

(property hasCompetency ?competency))))

(sortByAlreadySeen ?exercises ?unsortedExercises)

(assignIterator ?exercise ?exercises)

)

(

(insertResourceOnce! ?exercise)

)

)

Fig. 5.11. Selecting an exercise, any competency level, applicable on trainWith-

SingleExerciseRelaxed!

1 (:method (train! ?c)

2 MethodTrain!

3 (

4 (learnerProperty hasAllowedEducationalLevel ?aels)

5 (learnerProperty hasEducationalLevel ?edl)

6 (assignIterator ?el (?edl . ?aels))

7 (call GetResources

8 ((class Exercise)

9 (relation isFor ?c)

10 (property hasLearningContext ?el))))

11 (

12 (trainWithSingleExercise ?c very_easy think)

13 (trainWithSingleExercise ?c very_easy solve)

14 (trainWithSingleExercise ?c very_easy represent)

15 (trainWithSingleExercise ?c very_easy language)

16 (trainWithSingleExercise ?c very_easy model)

17 (trainWithSingleExercise ?c very_easy argue)

18 (trainWithSingleExercise ?c very_easy tools)

19 (trainWithSingleExercise ?c very_easy communicate)

20 ...

21 (trainWithSingleExerciseRelaxed ?c)

22)

23)

Fig. 5.12. Inserting a sequence of exercises

5.1 Moderate Constructivist Competency-Based Scenarios 121

efficiency of the course generation process significantly. The planner will avoid
attempting to expand the subtasks in case none of them is achievable. If the
method is applicable, the method inserts subtasks that for each difficulty level
and for each competency cause the insertion of an exercise if it exists. In the
figure, the lines 12–19 show the first set of tasks. For each competency, the
subtasks try to insert a very easy exercise. This pattern is repeated for each
difficulty level (not shown in the figure). The preconditions of the method
for the final subtask (trainWithSingleExerciseRelaxed) correspond to the
preconditions of this method. In this manner, if the preconditions are fulfilled,
then at least the final subtask of the method can be achieved.

A previous version of the method did not include the final relaxed subtask.
However, it turned out that this imposed too hard constraints on the content.
Often, no completely adequate resource would exist and thus no exercises
were presented at all. Thus, we decided to add the relaxed subtask in this and
similar methods, in order to present at least some resources. The formative
and summative evaluation investigated whether this design decision had any
negative impact on the learners’ opinion regarding resource selection. This
was not the case as the results discussed in Section 7 will show.

5.1.2.5 Selecting a Sequence of Exercises for a Specific
Competency

The task (practiceCompetency competency f) triggers the insertion of ex-
ercises that train a specific competency competency for a given fundamental
f . The method that achieves the task is shown in Figure 5.13. Its precondition
serves to test whether there exists at least one exercise that fulfills one of the
subtasks. If so, the method’s task is decomposed into subtasks that try to
insert exercises for the given competency with increasing difficulty. The final
subtasks guarantees that at least one exercise is inserted.

5.1.3 Selecting Examples

The example selection formalized in Paigos is very similar to the exercise
selection. The main difference is that the field of an example is considered as
being more important than in exercise selection: examples illustrate aspects
of a fundamental and should, if possible, use situations and provide context
of the learner’s field of interest.

5.1.3.1 Selecting Examples for a Fundamental

The task that governs example selection is (illustrateWithSingleExample!
f) . If achieved, it triggers the insertion of an example for the fundamental f .
The method in Figure 5.14 is the first method that is applied when selecting an
example and is applicable if there exists an example with a field that matches

122 5 Course Generation in Practice: Formalized Scenarios

(:method (practiceCompetency ?competency ?c)

(

(learnerProperty hasAllowedEducationalLevel ?aels)

(learnerProperty hasEducationalLevel ?edl)

(assignIterator ?el (?edl . ?aels))

(call GetResources

((class Exercise)

(relation isFor ?c)

(property hasLearningContext ?el)

(property hasCompetency ?competency)))

)

(

(trainWithSingleExercise ?c very_easy ?competency)

(trainWithSingleExercise ?c very_easy ?competency)

(trainWithSingleExercise ?c easy ?competency)

(trainWithSingleExercise ?c easy ?competency)

(trainWithSingleExercise ?c medium ?competency)

(trainWithSingleExercise ?c medium ?competency)

(trainWithSingleExercise ?c difficult ?competency)

(trainWithSingleExercise ?c difficult ?competency)

(trainWithSingleExercise ?c very_difficult ?competency)

(trainWithSingleExercise ?c very_difficult ?competency)

(trainWithSingleExerciseRelaxed ?competency ?c)

)

)

Fig. 5.13. Training a competency with increasing difficulty level

the field of the learner and a learning context and competency level that
corresponds to the learner’s educational level and competency level (lines 3–
6). Similar to the exercise selection, examples that the learner has not yet seen
are preferred (line 14). In the reminder of this section, I explain only those
parts of the methods that vary. For the method in Figure 5.14, these are the
lines 3–6, shown in Figure 5.15.

The second method, shown in Figure 5.16 omits the constraint on the
competency level and tries to insert an example that has the field of the
learner and corresponds to her educational level.

If still no example was found, then the next method omits the constraint
on the field, but reintroduces the competency level (Figure 5.17).

The methods in Figures 5.18–5.20 perform the same functionality as the
first three methods, but relax the constraint on the educational level by taking
into account all allowed educational levels.

5.1 Moderate Constructivist Competency-Based Scenarios 123

1 (:method (illustrateWithSingleExample! ?c)

2 (

3 (learnerProperty hasField ?field)

4 (learnerProperty hasEducationalLevel ?el)

5 (learnerProperty hasCompetencyLevel ?c ?cl)

6 (equivalent ?cl ?ex_cl)

7 (assign ?unsortedExamples

8 (call GetResources

9 ((class Example)

10 (relation isFor ?c)

11 (property hasLearningContext ?el)

12 (property hasCompetencyLevel ?ex_cl)

13 (property hasField ?field))))

14 (sortByAlreadySeen ?examples ?unsortedExamples)

15 (assignIterator ?example ?examples)

16)

17 (

18 (insertWithVariantsIfReady! ?example ?c)

19)

20)

Fig. 5.14. Selecting an example for illustrateWithSingleExample!

(learnerProperty hasField ?field)

(learnerProperty hasEducationalLevel ?el)

(learnerProperty hasCompetencyLevel ?c ?cl)

(equivalent ?cl ?ex_cl)

Fig. 5.15. Selecting an example, adequate field and competency level

(learnerProperty hasField ?field)

(learnerProperty hasEducationalLevel ?el)

Fig. 5.16. Selecting an example, adequate field

(learnerProperty hasEducationalLevel ?el)

(learnerProperty hasCompetencyLevel ?c ?cl)

(equivalent ?cl ?ex_cl)

Fig. 5.17. Selecting an example, adequate competency level

124 5 Course Generation in Practice: Formalized Scenarios

(learnerProperty hasField ?field)

(learnerProperty hasCompetencyLevel ?c ?cl)

(equivalent ?cl ?ex_cl)

(learnerProperty hasAllowedEducationalLevel ?aels)

(assignIterator ?el ?aels)

Fig. 5.18. Selecting an example, adequate field and competency level, lower edu-
cational level

(learnerProperty hasField ?field)

(learnerProperty hasAllowedEducationalLevel ?aels)

(assignIterator ?el ?aels)

Fig. 5.19. Selecting an example, adequate field, lower educational level

(learnerProperty hasCompetencyLevel ?c ?cl)

(equivalent ?cl ?ex_cl)

(learnerProperty hasAllowedEducationalLevel ?aels)

(assignIterator ?el ?aels)

Fig. 5.20. Selecting an example, adequate competency level, lower educational level

5.1.3.2 Selecting Examples for a Fundamental with Additional
Constraints

Analogous to the exercise selection, a second set of methods exists for the
example selection that adds constraints on difficulty and competency. Fig-
ure 5.21 shows the first of these methods, which corresponds to the first
method for general example selection shown in Figure 5.14, but extends the
mediator query with values for difficulty and competency (lines 14–15). The
five other methods are not shown in this volume.

5.1.3.3 Least Constrained Example Selection

Figure 5.22 contains the fallback method used in case an example needs to be
presented, but none of the previous methods was successfully applied (task
illustrateWithSingleExampleRelaxed!). In order to be selected by the
method, an example needs to have an allowed learning context and must
not yet been inserted in the course.

5.1 Moderate Constructivist Competency-Based Scenarios 125

1 (:method (illustrateWithSingleExample! ?c ?difficulty ?competency)

2 (;; preconditions

3 (learnerProperty hasField ?field)

4 (learnerProperty hasEducationalLevel ?el)

5 (learnerProperty hasCompetencyLevel ?c ?cl)

6 (equivalent ?cl ?ex_cl)

7 (assign ?unsortedExamples

8 (call GetResources

9 ((class Example)

10 (relation isFor ?c)

11 (property hasLearningContext ?el)

12 (property hasCompetencyLevel ?ex_cl)

13 (property hasField ?field)

14 (property hasDifficulty ?difficulty)

15 (property hasCompetency ?competency))))

16 (sortByAlreadySeen ?examples ?unsortedExamples)

17 (assignIterator ?example ?examples)

18)

19 (;; subtask

20 (insertWithVariantsIfReady! ?example ?c)

21)

22)

Fig. 5.21. Selecting an example, taking difficulty and competency into account

(:method (illustrateWithSingleExampleRelaxed! ?c)

(

(learnerProperty hasAllowedEducationalLevel ?aels)

(learnerProperty hasEducationalLevel ?edl)

(assignIterator ?el (?edl . ?aels))

(assign ?unsortedExamples

(call GetResources

((class Example)

(relation isFor ?c)

(property hasLearningContext ?el))))

(sortByAlreadySeen ?examples ?unsortedExamples)

(assignIterator ?example ?examples)

)

(

(insertResourceOnce! ?example)

)

)

Fig. 5.22. Selecting an example, any competency level, applicable on illus-

trateWithSingleExampleRelaxed!

126 5 Course Generation in Practice: Formalized Scenarios

5.1.3.4 Selecting a Sequence of Examples That Covers All
Competencies

The method shown in Figure 5.23 is applicable on the task illustrate! and
inserts a sequence of examples. It has the same structure as the method for
exercise selection shown in Figure 5.12: the preconditions test whether there
exists at least one example that can be inserted by one of the subtasks. If
so, the method inserts subtasks that for each difficulty level and for each
competency try to insert an example (in the figure, the pattern is only shown
for the easiest difficulty level). The final subtask ensures that at least a single
example is inserted.

(:method (illustrate! ?c)

(

(learnerProperty hasAllowedEducationalLevel ?aels)

(learnerProperty hasEducationalLevel ?edl)

(assignIterator ?el (?edl . ?aels))

(call GetResources

((class Example)

(relation isFor ?c)

(property hasLearningContext ?el))))

(

(illustrateWithSingleExample ?c very_easy think)

(illustrateWithSingleExample ?c very_easy solve)

(illustrateWithSingleExample ?c very_easy represent)

(illustrateWithSingleExample ?c very_easy language)

(illustrateWithSingleExample ?c very_easy model)

(illustrateWithSingleExample ?c very_easy argue)

(illustrateWithSingleExample ?c very_easy tools)

(illustrateWithSingleExample ?c very_easy communicate)

...

(illustrateWithSingleExampleRelaxed ?c)

)

)

Fig. 5.23. Inserting a sequence of examples

5.1.3.5 Selecting a Sequence of Examples for a Specific
Competency

The task (illustrateCompetency! competency f) inserts a sequence of ex-
amples that illustrate the given competency competency of the given funda-
mental f . The method applicable on this task is shown in Figure 5.24. Its
precondition serves to test whether there exists at least one example that can

5.1 Moderate Constructivist Competency-Based Scenarios 127

(:method (illustrateCompetency! ?competency ?c)

(

(learnerProperty hasAllowedEducationalLevel ?aels)

(learnerProperty hasEducationalLevel ?edl)

(assignIterator ?el (?edl . ?aels))

(call GetResources

((class Example)

(relation isFor ?c)

(property hasLearningContext ?el)

(property hasCompetency ?competency)))

)

(

(illustrateWithSingleExample ?c very_easy ?competency)

(illustrateWithSingleExample ?c very_easy ?competency)

(illustrateWithSingleExample ?c easy ?competency)

(illustrateWithSingleExample ?c easy ?competency)

(illustrateWithSingleExample ?c medium ?competency)

(illustrateWithSingleExample ?c medium ?competency)

(illustrateWithSingleExample ?c difficult ?competency)

(illustrateWithSingleExample ?c difficult ?competency)

(illustrateWithSingleExample ?c very_difficult ?competency)

(illustrateWithSingleExample ?c very_difficult ?competency)

(illustrateWithSingleExampleRelaxed ?competency ?c)

)

)

Fig. 5.24. Illustrating a competency with increasing difficulty level

fulfill one of the subtasks. If so, the task is decomposed into subtasks that try
to insert examples for the given competency with increasing difficulty. The
final subtask guarantees that at least one example is inserted.

In the following sections, I describe the formalization of the six scenar-
ios developed in LeActiveMath. Each scenario is explained in a top-down
manner, starting with the goal task of the scenario and then gradually diving
into the hierarchy of tasks and subtasks.

5.1.4 Scenario “Discover”

The scenario “discover” generates courses that contain those educational re-
sources that support the learner in reaching an in-depth understanding of the
fundamentals given in the goal task. The course includes the prerequisites
fundamentals that are unknown to the learner. It also provides the learner
with several opportunities to use learning-supporting services.

The basic structure of the scenario follows the course of action in a class-
room as described by Zech [215], which consists of several stages that typically

128 5 Course Generation in Practice: Formalized Scenarios

occur when learning a new fundamental. For each stage, the course contains
a corresponding section. The following sections are created:

Description. The course starts with a description of its aim and structure.
Then, for each fundamental given in the goal task, the following sections
are created.

Introduction. This section motivates the usefulness of the fundamental using
adequate auxiliaries (for all stages, the precise meaning of an “adequate”
educational resources is explained in the formalized methods below). It
also contains the unknown prerequisites.

Develop. This section presents the fundamental and illustrates how it can be
applied.

Proof. For some fundamentals (theorems), proofs, or more general evidence
supporting the fundamentals is presented.

Practice. This section provides opportunities to train the fundamental.
Connect. This section illustrates the connections between the current funda-

mental and related fundamentals.
Reflection. Each course closes with a reflection section, which provides the

learner with opportunity to reflect on what he has learned in the course.

5.1.4.1 Top-Level Decomposition of “Discover”

The two methods illustrated in Figure 5.25 start the generation of a course for
the scenario “discover”. The upper method decomposes the task (discover
f) into five subtasks. First, a new section is started, in this case the course
itself (line 4). Then, a description about the course’s aims and structure is
inserted (line 5). The third subtask triggers a method that recursively in-
serts the task (learnFundamentalDiscover g) for each identifier g in the
list of identifiers bound to ?fundamentals. The last two subtasks insert the
reflection section and close the course.

The methods that insert the tasks (learnFundamentalDiscover g) for
each fundamental g are not shown in the figure since they follow the schema
illustrated previously in other methods: one method recursively inserts the
task for each element in the list, and a second method ends the recursion if
the list becomes empty (the base case).

For each fundamental g, a task (learnFundamentalDiscover g) is cre-
ated. The bottom method in Figure 5.25 decomposes the task into subtasks
which closely resemble the structure of the scenario as described in the pre-
vious section. They will be discussed in the following.

5.1.4.2 Section “Introduction”

An introduction of a fundamental f in the scenario “discover” consists of a
section that contains one or several educational resources that introduce f
and of a section that contains the prerequisite fundamentals that the learner

5.1 Moderate Constructivist Competency-Based Scenarios 129

1 (:method (discover ?fundamentals)

2 ()

3 (

4 (!startSection Discover ?fundamentals

5 (discover ?fundamentals))

6 (descriptionScenarioSection ?fundamentals)

7 (learnFundamentalsDiscover ?fundamentals)

8 (reflect ?fundamentals)

9 (!endSection)

10)

11)

12

13 (:method (learnFundamentalDiscover ?c)

14 ()

15 (

16 (!startSection Title (?c)

17 (learnFundamentalDiscover (?c)))

18 (introduceWithPrereqSection ?c)

19 (developFundamental ?c)

20 (proveSection ?c)

21 (practiceSection ?c)

22 (showConnectionsSection ?c)

23 (!endSection)

24)

25)

Fig. 5.25. Top-level decomposition in the scenario “discover”

(:method (introduceWithPrereqSection! ?c)

()

((introduceWithSection! ?c)

(learnPrerequisitesFundamentalsShortSection! ?c)))

Fig. 5.26. introduceWithPrereqSection generates an introduction that includes
prerequisites

needs to see. The method in Figure 5.26 displays the method for the critical
task. As explained earlier, for each critical task there exists an optional task
and the corresponding methods. Due to space reasons, they are not shown
here.

The resources that introduce a fundamental f are determined by the
method in Figure 5.27. The method starts a new section and inserts a text
that explains the purpose of the section. The following three tasks try to insert
several resources: a resource that motivates the fundamental f, a resource that

130 5 Course Generation in Practice: Formalized Scenarios

(:method (introduceWithSection! ?c)

()

(

(!startSection Introduction (?c)

(introduceWithSection! (?c)))

(text Introduction (?c))

(motivate! ?c)

(problem! ?c)

(insertIntroductionExample! ?c)

(!endSection)

)

)

Fig. 5.27. introduceWithSection! generates an introduction

1 (:method (problem! ?c)

2 (

3 (learnerProperty hasEducationalLevel ?el)

4 (assignIterator ?r

5 (call GetResources

6 ((class RealWorldProblem)

7 (relation isFor ?c)

8 (property hasLearningContext ?el)))))

9 (

10 (insertResourceOnce! ?r)

11)

12)

Fig. 5.28. problem! selects a real-world-problem

contains a real-world-problem involving f, and an example that illustrates the
application of f.

Figure 5.28 contains the method responsible for the selection of a real-
world-problem. (task (problem! f)). It retrieves all resources that are of type
RealWorldProblem (lines 4–7) and inserts the first one not already inserted
(line 9). An analogous method exists that takes all allowed educational levels
into account.

5.1.4.3 Motivating a Fundamental

Several methods encode the knowledge how to catch the learner’s interest
regarding a fundamental. If the learner exhibits no fear of mathematics, then
the method in Figure 5.29 tries to insert into the course a very easy exercise
that is also an introduction (an equivalent method exists for an easy exercise).

5.1 Moderate Constructivist Competency-Based Scenarios 131

(:method (motivate! ?c)

(

(learnerProperty hasAnxiety ?c ?an)

(call <= ?an 2)

(learnerProperty hasEducationalLevel ?el)

(assignIterator ?r

(call GetResources

((class Exercise)

(class Introduction)

(relation isFor ?c)

(property hasLearningContext ?el)

(property hasDifficulty very_easy)))))

(

(insertAuxOnceIfReady! ?r ?c)

)

)

Fig. 5.29. Motivating a fundamental, no anxiety

(:method (motivate! ?c)

()

((insertIntroductionExample! ?c)))

Fig. 5.30. Motivating a fundamental using an example

The rationale is to provide a challenging but achievable exercise to the learner,
which according to [91] fosters motivation.

Otherwise or if no such exercises exist, the method in Figure 5.30 uses the
task (insertIntroductionExample! f) to insert an example as introduc-
tion. A specific set of methods explained in the following section implements
this functionality since it is also required in other scenarios, in contrast to the
introductory exercise selection explained above.

The method shown in Figure 5.31 searches for an educational resource that
is an introduction and inserts it if available. An equivalent method extends
the educational level to the allowed educational levels.

5.1.4.4 Using an Example as Introduction

The task of inserting an example as an introduction is performed by the
method in Figure 5.32. It inserts a very easy example which is also an intro-
duction if available. Two additional methods for the same task search for an
easy and medium difficult example (not shown).

132 5 Course Generation in Practice: Formalized Scenarios

(:method (motivate! ?c)

(

(learnerProperty hasEducationalLevel ?el)

(assignIterator ?r

(call GetResources

((class Introduction)

(relation isFor ?c)

(property hasLearningContext ?el)))))

(

(insertAuxOnceIfReady! ?r ?c)

)

)

Fig. 5.31. Motivating a fundamental using an introduction

(:method (insertIntroductionExample! ?c)

(

(learnerProperty hasEducationalLevel ?el)

(assignIterator ?r

(call GetResources

((class Example)

(class Introduction)

(relation isFor ?c)

(property hasLearningContext ?el)

(property hasDifficulty very_easy))))

)

(

(insertAuxOnceIfReady! ?r ?c)

)

)

Fig. 5.32. Introducing a fundamental using an example

5.1.4.5 Inserting Prerequisites

In the scenario “discover”, all prerequisite fundamentals that are unknown to
the learner are presented on a single page. Thus the students easily distinguish
between the target fundamentals and the prerequisites.

The axiom shown in Figure 5.33 is used to retrieve the prerequisite funda-
mentals. In a first step, all fundamentals that are required by the fundamental
bound to ?c and whose learning context corresponds to the educational level
of the learner are collected using the call term GetRelated (lines 4–7). In case
some were found (line 8), they are sorted with respect to the prerequisite re-
lationship requires (lines 9–12). Finally, those fundamentals that are known

5.1 Moderate Constructivist Competency-Based Scenarios 133

1 (:- (collectUnknownPrereq ?c ?result)

2 (

3 (learnerProperty hasEducationalLevel ?el)

4 (assign ?resources (call GetRelated (?c) -1

5 (((class Fundamental)

6 (relation isRequiredBy ?c)

7 (property hasLearningContext ?el)))))

8 (not (same ?resources nil))

9 (assign ?sorted (call Sort ?resources

10 (((class Fundamental)

11 (relation isRequiredBy ?c)

12 (property hasLearningContext ?el)))))

13 (removeKnownFundamentals ?reversedUnknown ?sorted)

14 (assign ?result (call Reverse ?reversedUnknown))

15)

16)

Fig. 5.33. collectUnknowPrerq collects all unknown prerequisites

1 (:method (learnPrerequisitesFundamentalsShort! ?c)

2 (

3 (collectUnknownPrereq ?c ?result)

4 (not (same ?result nil))

5)

6 ((insertAllResources ?result)))

Fig. 5.34. Inserting all unknown prerequisites

to the learner are removed using the axiom removeKnownFundamentals and
the result is bound to the variable ?result.

The axiom is used by the method shown in Figure 5.34. It first collects all
unknown fundamentals (in the precondition in line 3) and, if there are any,
adds a task that inserts them (line 6).

5.1.4.6 Section “Develop”

The section “develop” presents the fundamental, together with auxiliaries
that help the learner to understand it. Figure 5.35 shows the corresponding
method. Both precondition-subtask pairs start a new section, include a text
that explains the purpose of the section and insert the fundamental the section
is about. In case the learner exhibits a high competency level (tested in the
first precondition), a single example illustrates the fundamental. Otherwise,
the learner does not exhibit a high competency level, and first a text explain-
ing the fundamental is inserted, followed by several examples that aim at

134 5 Course Generation in Practice: Formalized Scenarios

providing the learner with a first understanding of the fundamental. The ex-
ample insertion uses the dynamic task (!dynamicTask illustrate! (?c)):
the planning process does not expand this subtask, hence the specific examples
are selected at a later time. The final subtask closes the section.

(:method (developFundamental ?c)

((learnerProperty hasCompetencyLevel ?c ?cl)

(call >= ?cl 3))

(

(!startSection Title (?c) (developFundamental (?c)))

(text Develop (?c))

(!insertResource ?c)

(illustrateWithSingleExample ?c)

(!endSection)

)

()

(

(!startSection Title (?c) (developFundamental (?c)))

(text Develop (?c))

(!insertResource ?c)

(explain ?c)

(!dynamicTask illustrate! (?c))

(!endSection)

)

)

Fig. 5.35. Developing a fundamental

(:method (explain! ?c)

(

(learnerProperty hasEducationalLevel ?el)

(assignIterator ?r (call GetResources

((class Remark)

(relation isFor ?c)

(property hasLearningContext ?el)))))

(

(insertAuxOnceIfReady! ?r ?c)

)

)

Fig. 5.36. Explaining a fundamental

5.1 Moderate Constructivist Competency-Based Scenarios 135

1 (:method (prove! ?c)

2 (

3 (learnerProperty hasCompetencyArgue ?c ?argue)

4 (call >= ?argue 3)

5 (learnerProperty hasEducationalLevel ?el)

6 (assignIterator ?exercise

7 (call GetResources

8 ((class Exercise)

9 (relation isFor ?c)

10 (property hasLearningContext ?el)

11 (property hasCompetency argue))))

12)

13 (

14 (insertAuxOnceIfReady! ?exercise ?c)

15)

16)

Fig. 5.37. Presenting a proof exercise

The method shown in Figure 5.36 provides information about a funda-
mental by inserting an educational resource of the type Remark. The fallback
method that relaxes the constraint on the educational level by considering all
allowed educational levels is not shown.

5.1.4.7 Section “Prove”

Proofs play an important role in mathematics and being able to prove is one
aspect of the competency “argue”. The methods in this section govern the in-
sertion of proofs and proof exercises. However, instead of inserting educational
resources of type Proof, the methods implement a more abstract approach
and insert resources of type Evidence, the superclass of Proof. This way, the
pedagogical approach implemented in the methods is also applicable to other
areas than mathematics, e. g., physics, where demonstrations and experiments
play an important role.

Resources of the type Evidence are for resources of the type Law, includ-
ing its subclasses Theorem and LawOfNature. In case the methods explained
in this section are applied on different subclasses of Fundamental than Law,
they will fail, since the required resources will not exist (e. g., a proof for a def-
inition). But still, the overall course will be generated, since the task (prove!
f) is embedded in an optional task.

In case the learner has a high competency “argue”, then she is able to
find proofs or establish evidence on her own. Thus, the method shown in Fig-
ure 5.37 does not insert an evidence but an exercise for the competency “ar-
gue”. The preconditions of the method check whether the learner has reached

136 5 Course Generation in Practice: Formalized Scenarios

a high competency level for the competency argue (lines 3–4). In that case, a
proof exercise is selected, i. e., an exercise for the competency “argue”.

If the learner has not reached a high competency “argue”, then resources
of the type Evidence are inserted. In case more than a single evidence exists,
the evidences are inserted ordered by increasing abstractness using the rep-
resentational type: visually oriented evidence is presented first, followed by
verbal, numeric, and symbolic evidence, and finally evidence that is not anno-
tated with a representational type (since one cannot assume that all resources
are annotated with this metadata). The evidences are followed by exercises
that train the competency “argue”.

Figure 5.38 shows parts of the method. Lines 5–10 retrieve evidences with a
visual representation type. In case there exist several evidences, there is often a
preferred order in which to show them to the learner. This order does not have
to be induced by the domain, but can be based on purely pedagogical consid-
erations. Since Paigos does not distinguish between pedagogical and domain
dependencies (it was not necessary for the formalized scenarios), both types
of dependencies are represented using the relation requires, which is used by
Paigos to sort the evidences (lines 11–17). The preconditions in lines 5–17
are repeated for each representational type (not included in the figure). Then,
lines 19–32 collect and sort all existing evidences, thereby including evidence
without a representation value. Lines 33–34 remove the previously collected
evidences, thus keeping only evidences without a representation value. These
five collected lists of evidences (“visual”, “verbal”, “numeric”, “symbolic”,
and no representation value) are concatenated (line 35–38). The subtasks of
the method insert the resulting list (line 42) and proof exercises (line 43, the
subtask will be explained in detail later).

5.1.4.8 Section “Practice”

The methods in the section “practice” insert a list of exercises that provide
the learner with opportunities to develop her own understanding of the fun-
damental, from a variety of perspectives.

The method illustrated in Figure 5.39 creates a corresponding section.
Note that the result of the call term GetResource (lines 6–10) is not bound
to a variable. Its only purpose is to test whether there exists an exercise that
can be inserted at a later time, when the dynamic task is expanded. This test
is performed for each allowed educational level until matching resources are
found. In case no resource was found for any educational level, the method
is not applicable and backtracking takes place. If this test would not be per-
formed, then it might happen that a dynamic task is inserted even if there
are no exercises that can fulfill it.

The subtasks of the method start the section and insert a text that ex-
plains the purpose of the section (lines 13–14). Line 15 inserts a reference to
a learning-supporting service called exercise sequencer. An exercise sequencer

5.1 Moderate Constructivist Competency-Based Scenarios 137

1 (:method (prove! ?c)

2 MethodProveByProve!

3 (

4 (learnerProperty hasEducationalLevel ?edl)

5 (assign ?visualProofsUnsorted

6 (call GetResources

7 ((class Evidence)

8 (relation isFor ?c)

9 (property hasLearningContext ?edl)

10 (property hasRepresentationType visual))))

11 (assign ?visualProofs

12 (call Sort ?visualProofsUnsorted

13 (((class Evidence)

14 (relation isFor ?c)

15 (relation isRequiredBy ?visualProofs)

16 (property hasLearningContext ?edl)

17 (property hasRepresentationType visual)))))

18 ...

19 (assign ?allWithRep

20 (call Concat ?visualProofs ?verbalProofs

21 ?numericProofs ?symbolicProofs))

22 (assign ?allProofsUnsorted

23 (call GetResources

24 ((class Evidence)

25 (relation isFor ?c)

26 (property hasLearningContext ?edl))))

27 (assign ?allProofs

28 (call Sort ?allProofsUnsorted

29 (((class Evidence)

30 (relation isFor ?c)

31 (relation isRequiredBy ?allProofsUnsorted)

32 (property hasLearningContext ?edl)))))

33 (assign ?allProofsWithoutRep

34 (call Restrict ?allProofs ?allWithRep))

35 (assign ?all

36 (call Concat ?visualProofs ?verbalProofs

37 ?numericProofs ?symbolicProofs

38 ?allProofsWithoutRep))

39 (not (same nil ?all))

40)

41 (

42 (insertAllResources ?all)

43 (practiceCompetencyForAllFundamentals argue ?all)

44)

45)

Fig. 5.38. Presenting proofs

138 5 Course Generation in Practice: Formalized Scenarios

1 (:method (practiceSection! ?c)

2 MethodPracticeSection!

3 (

4 (learnerProperty hasAllowedEducationalLevel ?aels)

5 (learnerProperty hasEducationalLevel ?edl)

6 (assignIterator ?el (?edl . ?aels))

7 (call

8 GetResources

9 ((class Exercise)

10 (relation isFor ?c)

11 (property hasLearningContext ?el)))

12)

13 (

14 (!startSection Exercises (?c) (practiceSection! (?c)))

15 (text Practice (?c))

16 (!insertLearningService

17 ExerciseSequencer TrainCompetencyLevel (?c))

18 (!dynamicTask train! (?c))

19 (!endSection)

20)

21)

Fig. 5.39. Training a fundamental

leads the learner interactively through a sequence of exercises until a termi-
nating condition is reached, given by the second parameter. In this case, the
parameter TrainCompetencyLevel specifies that the learner should reach the
next higher competency level. Since some learners prefer not to use the exer-
cise sequencer, the following subtask, a dynamic task, triggers the insertion of
exercises (line 16, the task train! was explained in Section 5.1.2). Due to the
preconditions, it is certain that this subtask can be fulfilled. The final subtask
closes the section.

5.1.4.9 Section “Connect”

The section “connect” illustrates the connections between the current fun-
damental and related fundamentals of type law (including theorems). Fig-
ure 5.40 contains the corresponding method. If a concept mapping tool is
available (tested in the precondition in line 2), it is used for displaying the
connections (the subtask in line 3). Otherwise, the resources of the type law
are inserted in the course.

The method in Figure 5.41 inserts the reference to a learning-support
service of type CMap, i. e., a concept mapping tool (lines 10–13). The tool
displays a given fundamental f and all fundamentals of the given type that

5.1 Moderate Constructivist Competency-Based Scenarios 139

1 (:method (showConnections! ?c)

2 ((learningServiceAvailable CMap))

3 ((showConnectionsByCMap! ?c))

4

5 ()

6 ((showConnectionsByTheoremWithProof! ?c))

7)

Fig. 5.40. Illustrating the connections of a fundamental to other fundamentals

1 (:method (showConnectionsByCMap! ?c)

2 (

3 (learnerProperty hasEducationalLevel ?el)

4 (call GetResources ((class Law)

5 (relation requires ?c)

6 (property hasLearningContext ?el)))

7)

8 (

9 (text Connect (?c))

10 (!insertLearningService CMap display (?c)

11 (includeEdge1 isRequiredBy includeEdge2 isA

12 includeEdge3 inverseIsA includeCategory1 Definition

13 includeCategory2 Law computeNeighbourNodes 1))

14)

15)

Fig. 5.41. Illustrating connections using a concept mapping tool

are connected to f by the given relations. The method is applicable only if
there exist resources that can be displayed (tested in lines 4–6).

In case a concept mapping tool is not available, the connections are made
visible in the course by inserting all laws that require the current fundamental
(the upper method in Figure 5.42, lines 4–7). The variables contain the word
“Theorem” for historical reasons, but of course include resources of the type
law. Those laws that are target fundamentals (line 8) and those that were
already inserted (line 9) are excluded. The sorted laws are then inserted in
the course, together with explanations and evidence (the lower method in
Figure 5.42).

A similar method exists that is applicable on the task (showConnections-
Theorem f). This method does not insert the subtask (prove ?theorem).

5.1.4.10 Section “Reflect”

Each course generated for the scenario “discover” closes with a reflection
step, which provides the learner with opportunity to reflect on what he has

140 5 Course Generation in Practice: Formalized Scenarios

1 (:method (showConnectionsByTheoremWithProof! ?c)

2 (

3 (learnerProperty hasEducationalLevel ?el)

4 (assign ?allTheoremsH

5 (call GetResources

6 ((class Law)

7 (relation requires ?c)

8 (property hasLearningContext ?el))))

9 (getNonTargetFundamentals ?allTheoremsHH ?allTheoremsH)

10 (getNonInserted ?allTheorems ?allTheoremsHH)

11 (assign ?sortedTheorems

12 (call Sort ?allTheorems

13 (((class Law)

14 (relation isRequiredBy allTheorems)

15 (property hasLearningContext ?el)))))

16 (not (same ?sortedTheorems nil))

17)

18 (

19 (text Connect (?c))

20 (showConnectionsTheoremsWithProof ?sortedTheorems)

21)

22)

23

24 (:method (showConnectionsTheoremWithProof ?theorem)

25 ()

26 ((insertResourceOnce! ?theorem)

27 (explain ?theorem)

28 (prove ?theorem)))

Fig. 5.42. Illustrating connections using theorems

learned in the course. Preferably, this is done using an Open Learner Model
(olm, [35]). The olm in LeActiveMath shows the learner its current be-
liefs about his competencies. The first precondition-subtask pair is applicable
if an olm is available. In that case, the method inserts a reference to the
learning-support service whose parameters encode the fundamentals and the
competency to display. The keyword competency denotes the aggregated com-
petency.

In case, an olm is not available, a text is inserted that prompts the learner
to perform this reflection manually, e. g., “Please think about your learning
process: How did you proceed? Did you understand everything? If not, try to
look up the necessary content using the system”.

5.1 Moderate Constructivist Competency-Based Scenarios 141

1 (:method (reflect ?fundamentals)

2 ((learningServiceAvailable OLM))

3 (

4 (!startSection Reflection

5 ?fundamentals (reflect ?fundamentals))

6 (!insertLearningService OLM display ?fundamentals

7 (competencyId competency))

8 (!endSection)

9)

10

11 ()

12 ((!startSection Reflection

13 ?fundamentals (reflect ?fundamentals))

14 (text Reflect ?fundamentals)

15 (!endSection)))

Fig. 5.43. Reflecting over the learned fundamentals

5.1.4.11 Example

Figure 5.44 contains a screenshot of a course generated for the scenario “dis-
cover” and the goal fundamentals “the definition of the derivative, resp., the
differential quotient”, “the definition of the derivative function” and the theo-
rem “sum rule”. The page displayed on the right hand side of the figure is the
second page of the course. It contains the first items of the prerequisites page:

Fig. 5.44. A course generated for the scenario “discover”

142 5 Course Generation in Practice: Formalized Scenarios

the generated text that describes the purpose of the section and the first of
the prerequisite fundamentals. The sections displayed in the table of contents
vary in the pages they contain. For instance, the first section does not contain
an introduction page. The reason is that no elements could be found to be
displayed in this section and therefore, the section was skipped.

In the following, after each scenario description I present a screenshot of
a course generated for the corresponding scenario, always for the same goal
fundamentals. These examples illustrate the different kinds of course Paigos

can generate.

5.1.5 Scenario “Rehearse”

Courses of the type “rehearse” are designed for learners who are already ac-
quainted with the target fundamentals but do not yet master them completely.
Such a course provides several opportunities to examine and practice applica-
tions of the fundamentals and illustrates the connections between fundamen-
tals. The structure is as follows:

Description. The course starts with a description of its aim and structure.
Then, for each fundamental given in the goal task, the following sections
are created.

Rehearsing the Fundamental. This section presents the fundamental of the
section.

Illustrate. This section presents example applications of the fundamental.
Connect. This section illustrate the connections between the current funda-

mental and related fundamentals.
Practice. This section provides opportunities to train the fundamental.
Illustrate–2. This section contains additional examples.
Practice–2. This section contains additional exercises.

5.1.5.1 Top-Level Decomposition of “Rehearse”

The top-level decomposition in the scenario “rehearse” is illustrated in Fig-
ure 5.45. The upper method first starts a new section, in this case the
course itself (line 4), and then inserts the description of the course’s aims
and structure (line 5). The third subtask triggers the insertion of the task
(rehearseSingleFundamental f) for each fundamental given in the goal
task (line 6). Finally, the section that contains the course is closed (line 7).

The lower method in Figure 5.45 inserts subtasks that reflect the overall
structure of the scenario. Each fundamental is presented in its proper section.
First, in line 15, the fundamental is presented, using the method illustrated in
Figure 5.46. The following subtask inserts a first series of examples (line 16).
Then, connections to related laws are presented. The responsible task and
methods correspond to those described in the scenario “discover”, Figure 5.42,
with the difference that evidences are not presented. The rationale behind this

5.1 Moderate Constructivist Competency-Based Scenarios 143

1 (:method (rehearse ?fundamentals)

2 ()

3 (

4 (!startSection Rehearse

5 ?fundamentals (rehearse ?fundamentals))

6 (descriptionScenarioSection ?fundamentals)

7 (rehearseFundamentals ?fundamentals)

8 (!endSection)

9)

10)

11

12 (:method (rehearseSingleFundamental ?c)

13 ()

14 (

15 (!startSection Title (?c)

16 (rehearseSingleFundamental (?c)))

17 (insertFundamentalSectionWithText ?c)

18 (illustrateSection ?c)

19 (showConnectionsTheoremSection ?c)

20 (practiceSection ?c)

21 (!!changeScenario RehearseDeeper)

22 (illustrateSection ?c)

23 (practiceSection ?c)

24 (!!changeScenario Rehearse)

25 (!endSection)

26)

27)

Fig. 5.45. Top-level Decomposition in the scenario “rehearse”

(:method (insertFundamentalSectionWithText ?c)

()

(

(!startSection Title (?c)

(insertFundamentalSectionWithText (?c)))

(text Develop (?c))

(!insertResource ?c)

(!endSection)

)

)

Fig. 5.46. Presenting a fundamental in a section

144 5 Course Generation in Practice: Formalized Scenarios

Fig. 5.47. A course generated for the scenario “rehearse”

decision is that while learning of a fundamental benefits from presenting it
in context, in this scenario the focus does not lie on working with evidences,
e. g., proofs. Since the methods differ only in that the task (prove c) is not
inserted, they are not shown here.

The task in line 18 triggers the insertion of a number of exercises. After
having worked on this section, the learner should have solved a number of
exercises and her competency level should have changed accordingly. In order
to deepen the learner’s competencies, the lines 20–21 insert additional exam-
ples and exercises. The selected resources correspond to the learner’s current
level, since the selection is performed using dynamic tasks (see the subtasks
of illustrate and train explained in Section 5.1.2 and 5.1.3). However,
although the methods are reused, the texts explaining the purposes of the
sections “illustrate” and “train” should differ from the texts introduced in
the previous sections (in the lines 16 and 18). This is achieved by changing
the scenario name (line 19). Since the operators used for text insertion use
the scenario name as a context for text generation, changing the context will
result in different titles. The last two lines revert to the old scenario name
(line 22) and close the section (line 23).

5.1.5.2 Example

Figure 5.47 contains a screenshot of a course generated for the scenario “re-
hearse” and the same goal fundamentals as in the previous example: “the
definition of the derivative, resp., the differential quotient”, “the definition
of the derivative function” and the theorem “sum rule”. The page displayed

5.1 Moderate Constructivist Competency-Based Scenarios 145

on the right hand side of the figure is the second page of the course, which
contains the definition rehearsed in the first section of the course.

5.1.6 Scenario “Connect”

The scenario “connect” helps the learner to discover connections among the
fundamentals given in the goal task and other fundamentals and to provide
opportunities to train the fundamentals. The rationale of this scenario is that
laws connect definitions by describing some relationship between the defini-
tion, for instance, laws in physics put physical concepts in relation to each
other, and that becoming aware of these connections is beneficial to the user’s
learning [133].

At first glance, the structure of the scenario seems complicated, therefore
I will use the graph shown in Figure 5.48 as an example. In the graph, A, B, C
and D denote definitions, and T1 and T2 denote theorems or other laws. The
edges between the nodes denote the requires relationship, e. g., T1 requires
A. A course generated using the scenario “connect” is structured as follows:

Description. The course starts with a section that describes its aim and struc-
ture. Then, for each fundamental given in the goal task, say, A, the fol-
lowing sections are inserted.

Present Fundamental. The fundamental is inserted, together with a concept
map that shows its connections to laws and definitions.

Connect. For this section, all definitions (excluding A) are retrieved that are
required by those theorems that require A. In the figure, these are the
definitions B, C and D since T1 and T2 both require A and require B, C and
D. These are the definitions that are connected to A by theorems. Then,
for each retrieved definition, say B, the following sections are created:
Illustrate. This section presents example applications of the definition.
Train. This section provide opportunities to train the definition.
Develop. This section develops the definition in the following way:

Present. The definition is presented.
Connect-2. This section presents all theorems that connect the origi-

nal fundamental A with the definition B (T1 in the example) and
all previously processed definitions.

Train-Connection. The course ends with a section that contains a concept
map exercise.

The scenario was developed in the context of mathematics, therefore, the
following methods often use the term “theorem”. However, the scenario applies
to all educational resources of the type law.

5.1.6.1 Top-Level Decomposition of “Connect”

The top-level decomposition of the scenario “connect” (illustrated in Fig-
ure 5.49) is analogous to the other scenarios: a description is inserted, followed

146 5 Course Generation in Practice: Formalized Scenarios

Fig. 5.48. An example illustrating the scenario “connect”

(:method (connect ?fundamentals)

()

(

(!startSection Connections

?fundamentals (connect ?fundamentals))

(descriptionScenarioSection ?fundamentals)

(connectFundamentals ?fundamentals)

(!endSection)

))

Fig. 5.49. Top-level decomposition of the scenario “connect”

by a subtask that triggers the insertion of tasks for all fundamentals of the
goal task (connectSingleFundamental).

Figure 5.50 contains the principal method of the scenario “connect”. It
first retrieves all laws that require the current fundamental (lines 4–7). In
the example, for the fundamental A the laws T1 and T2 are retrieved. In case
no theorems were found, and thus no connections could be illustrated, the
method is not applicable (line 8). Otherwise, in the lines 9–13 all definitions
are collected that are required by the theorems (A, B and C in the example).
The current resource is removed from the result (line 14) and the remaining
resources are sorted (lines 15–19).

Then, a new section is started that first inserts the current fundamental
(line 25) and a concept map (line 26). The concept map visualizes the connec-
tions to come. In line 29 a subtask is inserted that adds a new section for each
collected definition. Its parameters contain the definitions for which a section
still needs to be created and the already processed definitions, initialized with
the current fundamental. The corresponding method is described below (Sec-
tion 5.1.6.3). Finally, a concept map exercise is inserted into the course. In
this exercise, the learner has to construct the previously shown relationships
on his own.

5.1 Moderate Constructivist Competency-Based Scenarios 147

1 (:method (connectSingleFundamental ?c)

2 (

3 (learnerProperty hasEducationalLevel ?el)

4 (assign ?theorems

5 (call GetResources

6 ((class Law)

7 (relation requires ?c)

8 (property hasLearningContext ?el))))

9 (not (same ?theorems nil))

10 (assign ?definitionsH

11 (call GetRelated ?theorems 1

12 (((class Definition)

13 (relation isRequiredBy ?theorems)

14 (property hasLearningContext ?el)))))

15 (removeElement ?definitions ?c ?definitionsH)

16 (assign ?sortedDefinitions

17 (call Sort ?definitions

18 (((class Definition)

19 (relation isRequiredBy ?definitions)

20 (property hasLearningContext ?el)))))

21)

22 (

23 (!startSection Connections (?c)

24 (connectSingleFundamental ?c))

25 (!startSection Title (?c))

26 (text Introduction (?c))

27 (!insertResource ?c)

28 (CMapConnect (call Concat (?c) ?theorems

29 ?sortedDefinitions))

30 (!endSection)

31 (!startSection ConnectionsOverview ?sortedDefinitions)

32 (developConnections ?sortedDefinitions (?c))

33 (!endSection)

34 (CMapConnectExerciseSection

35 (call Concat (?c) ?theorems ?sortedDefinitions))

36 (!endSection)

37)

38)

Fig. 5.50. Connecting a fundamental in the scenario “connect”

148 5 Course Generation in Practice: Formalized Scenarios

5.1.6.2 Displaying Concept Maps in the Scenario “Connect”

Figure 5.51 illustrates the method that inserts the concept map. The first pre-
condition tests whether a concept map service is available. If so, then a refer-
ence to the service is inserted. Its parameters specify that the given resources
should displayed, including all definitions and laws that are connected to the
resources by the relation requires and isRequiredBy. If no concept map ser-
vice is available then no subtask is inserted (the second precondition-subtask
pair). An analogous method applicable on the task (CMapConnectExercise
resources) inserts a link to a concept map exercise. In this exercise, the
learner has to compose the concept map on his own.

(:method (CMapConnect ?resources)

((learningServiceAvailable CMap))

(

(!insertLearningService CMap display ?resources

(includeEdge1 isRequiredBy includeEdge2 requires

includeCategory1 Definition includeCategory2 Law))

)

()

()

)

Fig. 5.51. The concept mapping tool displays relationships

5.1.6.3 The Section “Connect”

The method in Figure 5.52 presents the definitions which were retrieved for
the current fundamental from the goal task. Its first parameter contains the
definitions that still need to be inserted in the course; its second parameter is
instantiated with the already processed resources. They were initialized with
all definitions collected previously and the current fundamental from the goal
task (see the method illustrated in Figure 5.50). Each definition is illustrated
and trained (lines 5–6). The subtask in line 7 presents the connections of the
definition (described below). The final subtask serves to iterate through all
collected definitions and adds the currently processed fundamental to the al-
ready processed fundamentals (the second parameter). The method applicable
for the base case is not shown.

The method illustrated in Figure 5.53 inserts the laws that connect the
already processed and the current definition (collected using the axiom in
line 3, see below). The sorted laws are then inserted together with evidences
(e. g., proofs). Each law is inserted only once, at the first occurrence.

5.1 Moderate Constructivist Competency-Based Scenarios 149

1 (:method (developConnections (?c . ?rest) ?connected)

2 ()

3 (

4 (!startSection Title (?c) (developConnections (?c . ?rest)))

5 (illustrateSection ?c)

6 (practiceSection ?c)

7 (developConnectionSingleFundamental ?c ?connected)

8 (!endSection)

9 (developConnections ?rest (?c . ?connected))

10)

11)

Fig. 5.52. Developing a connected definition

1 :method (developConnectionSingleFundamental ?c ?fundamentals)

2 (

3 (collectConnectedTheorems ?theorems ?c ?fundamentals)

4 (learnerProperty hasEducationalLevel ?el)

5 (assign ?sortedTheorems

6 (call Sort ?theorems

7 (((class Law)

8 (relation isRequiredBy placeholder)

9 (property hasLearningContext ?el)

10)))))

11 (

12 (!startSection ConnectionsDetail (?c)

13 (developConnectionSingleFundamental (?c)))

14 (text Connect (?c))

15 (!insertResource ?c)

16 (showConnectionsTheoremsWithProof ?sortedTheorems)

17 (!endSection)

18)

19)

Fig. 5.53. Inserting connecting laws

The axiom shown in Figure 5.54 retrieves all laws that connect the funda-
mental f that instantiates the parameter ?c with the fundamentals fs that
instantiate ?fundamentals. It first collects all laws that require f (lines 4–
7). Then, it retrieves the laws that require the fundamentals fs (lines 8–12).
Line 13 removes those laws from the first list of laws that are not contained
in the second list, i. e., it retains all laws that are required by f as well as by
any fundamental contained in fs .

The remaining tasks and methods used in this scenario were described in
the previous sections.

150 5 Course Generation in Practice: Formalized Scenarios

1 (:- (collectConnectedTheorems ?theorems ?c ?fundamentals)

2 (

3 (learnerProperty hasEducationalLevel ?el)

4 (assign ?theoremsA

5 (call GetResources ((class Law)

6 (relation requires ?c)

7 (property hasLearningContext ?el))))

8 (assign ?theoremsB

9 (call GetRelated ?fundamentals 1

10 (((class Law)

11 (relation requires placeholder)

12 (property hasLearningContext ?el)))))

13 (assign ?theorems (call Retain ?theoremsA ?theoremsB))

14)

15)

Fig. 5.54. Collecting theorems for the connect step

5.1.6.4 Example

Figure 5.55 contains a screenshot of a course generated for the scenario “con-
nect” and the goal fundamentals: “the definition of the derivative, resp., the
differential quotient”, “the definition of the derivative function” and the the-
orem “sum rule”. The page displayed on the right hand side of the figure is
the second page of the course, which contains the definition rehearsed in the
first section and a concept map exercise that displays the connection between
the fundamentals.

5.1.7 Scenario “Train Intensively”

A course generated for the scenario “train intensively” generates a workbook
that aims at increasing the competency level of the learning by presenting
a large selection of exercises. The exercises cover all competencies and are
presented with increasing difficulty level.

5.1.7.1 Top-Level Decomposition of “Train Intensively”

Similar to the previous scenarios, for each fundamental in the goal task, a sec-
tion is introduced that trains the single fundamental using the task (train-
IntenseSingleFundamental ?c). Since the methods responsible for the de-
composition are very similar to those described previously, I will omit them.

A fundamental is trained intensely by presenting numerous exercises, first
at the learner’s current competency level, then at the next higher competency
level. The responsible method is shown in figure 5.56. The first precondition-
subtask pair is applicable if the learner has reached the highest competency

5.1 Moderate Constructivist Competency-Based Scenarios 151

Fig. 5.55. A course generated for the scenario “connect”

1 (:method (trainIntenseSingleFundamental ?c)

2 (

3 (learnerProperty hasCompetencyLevel ?c ?v)

4 (call >= ?v 4.0)

5)

6 (

7 (practiceAllCompetenciesSection ?c)

8)

9

10 (

11 (learnerProperty hasCompetencyLevel ?c ?cl)

12 (assign ?newCl (call + ?cl 1.0))

13)

14 (

15 (practiceAllCompetenciesSection ?c)

16 (!!setCompetencyLevel ?c ?newCl)

17 (practiceAllCompetenciesSection ?c)

18 (!!deleteSetCompetencyLevel ?c ?newCl)

19)

20)

Fig. 5.56. Intense training of a fundamental

152 5 Course Generation in Practice: Formalized Scenarios

level. In this case, only a single section of exercises is inserted into the
course (using the task (practiceAllCompetenciesSection ?c)). The sec-
ond precondition-action pair inserts this task twice, but in between adds an
atom in the world state that changes the competency level (line 16, explained
below). Since the methods for exercise selection use information about the
competency level to perform their selection, increasing the competency level
results in a selection of exercises of a higher level. The final subtask of the
method removes the previously inserted atom from the world state.

1 (:operator (!!setCompetencyLevel ?c ?cl)

2 ()

3 ()

4 (

5 (learnerProperty hasCompetencyLevel ?c ?cl)

6 (set (learnerProperty hasCompetencyLevel ?c))

7)

8)

9

10 (:operator (!!deleteSetCompetencyLevel ?c ?cl)

11 (

12 (learnerProperty hasCompetencyLevel ?c ?cl)

13)

14 (

15 (learnerProperty hasCompetencyLevel ?c ?cl)

16 (set (learnerProperty hasCompetencyLevel ?c))

17)

18 ()

19)

20

21 (:- (learnerProperty ?property ?r ?value)

22 ((not (set (learnerProperty ?property ?r)))

23 (user ?userId)

24 (assign ?value (call LearnerProperty ?userId ?property ?r))))

Fig. 5.57. Manually setting the competency level

Figure 5.57 contains the operators used for changing the competency level.
The first operator has no preconditions and an empty delete list, and adds
in the world state an atom representing the new competency level (line 5)
and an atom that indicates the fact that the competency was “manipulated”.
The second operator removes both facts previously inserted. An additional
change is required to the axiom learnerProperty that accesses the learner
model. The axiom now first checks whether a learner property was manually
inserted in the world state (line 22). If so, the axiom is not applicable since

5.1 Moderate Constructivist Competency-Based Scenarios 153

the requested information about the learner is to be taken from the world
state and not from the learner model.

5.1.7.2 Training all Competencies in the Scenario
“Train Intensively”

The method illustrated in Figure 5.58 decomposes a task (practiceCompe-
tency f) into subtasks (practiceCompetency f) that trigger the inser-
tion of exercises for each competency. These subtasks were explained in Sec-
tion 5.1.2.5.

(:method (practiceAllCompetencies ?c)

()

(

(practiceCompetency think ?c)

(practiceCompetency solve ?c)

(practiceCompetency represent ?c)

(practiceCompetency language ?c)

(practiceCompetency model ?c)

(practiceCompetency argue ?c)

(practiceCompetency tools ?c)

(practiceCompetency communicate ?c)

)

)

Fig. 5.58. Training all competencies

5.1.7.3 Example

A example course generated for the scenario “train intensively” is illustrated
in Figure 5.59. The goal fundamentals were “the definition of the derivative,
resp., the differential quotient”, “the definition of the derivative function” and
the theorem “sum rule”. For each fundamental, two pages were created that
contain the exercises.

5.1.8 Scenario “Train Competencies”

A course generated for the scenario “train competency” trains a specific com-
petency by presenting sequences of examples and exercises with increasing
difficulty and competency level. The courses are structured as follows:

Description. This section provides a description of the scenario. Then, for each
fundamental given in the goal task, the following sections are created:

154 5 Course Generation in Practice: Formalized Scenarios

Fig. 5.59. A course generated for the scenario“train intensively”

Rehearse. This section presents the current fundamental.
Illustrate and Practice. The following two sections are repeated for each com-

petency level starting with the competency level one below the learner’s
current level:
Illustrate. This section contains a sequence of examples of the competency

level of the learner and of increasing difficulty level.
Practice. This section contains a sequence of exercises of the competency

level of the learner and of increasing difficulty level.

5.1.8.1 Top-Level Decomposition of “Train Competencies”

Analogous to the other scenarios, several methods exist that perform the
principal decomposition and introduce a subtask for each fundamental. These
methods are not included here, since they are very similar to the previously
described ones.

For each fundamental, the task (trainCompetencySingleFundamental
f) is created. The method shown in Figure 5.60 decomposes the task into
subtasks that first insert the fundamental. The last subtask triggers the inser-
tion of examples and exercises, starting at a competency level one below the
current one of the learner. A similar method exists that caters for the case in
which the competency level equals 1.

5.1 Moderate Constructivist Competency-Based Scenarios 155

(:method (trainCompetencySingleFundamental! ?competency ?c)

(

(learnerProperty hasCompetencyLevel ?c ?cl)

(call > ?cl 1.0)

(learnerProperty hasAllowedEducationalLevel ?aels)

(learnerProperty hasEducationalLevel ?edl)

(assignIterator ?el (?edl . ?aels))

(call GetResources

((class Exercise)

(relation isFor ?c)

(property hasLearningContext ?el)

(property hasCompetency ?competency)

))

(assign ?newCl (call - ?cl 1.0))

)

(

(!startSection Rehearse (?c))

(!insertResource ?c)

(!endSection)

(trainCompetencyExamplesExercises ?competency ?c ?newCl)

)

)

Fig. 5.60. Top-level decomposition in the scenario “train competencies”

5.1.8.2 Sections “Illustrate” and “Train”

The first subtask of the method illustrated in Figure 5.61 sets the competency
level that is used by the examples and exercises selection. The subsequent se-
lection uses the tasks illustrateCompetencySection and practiceCompe-
tencySection described earlier. Afterwards, the set competency level is re-
moved from the world state. The final subtask starts the method again, this
time with an incremented competency level. A different method, not included
here, stops the recursion when the highest competency level is reached.

5.1.8.3 Example

The figure 5.62 contains a course generated for the scenario “trainCompeten-
cySolve” and the goal fundamentals “the definition of the derivative, resp.,
the differential quotient”, “the definition of the derivative function” and the
theorem “sum rule”.

5.1.9 Scenario “Exam Simulation”

The scenario “exam simulation” contains exercises that can be solved within
a specified timeframe. In contrast to the previous scenarios, the exercises are

156 5 Course Generation in Practice: Formalized Scenarios

(:method (trainCompetencyExamplesExercises ?competency ?c ?cl)

(

(call < ?cl 4.0)

)

(

(!!setCompetencyLevel ?c ?cl)

(illustrateCompetencySection ?competency ?c)

(practiceCompetencySection ?competency ?c)

(!!deleteSetCompetencyLevel ?c ?cl)

(trainCompetencyExamplesExercises ?competency ?c

(call + 1.0 ?cl))

)

Fig. 5.61. Sections “illustrate” and “train” in the scenario “train competency”

Fig. 5.62. A course generated for the scenario “train competency”

not selected with respect to learner properties since this is not the case in a
real exam either. The generated courses consists of a number of pages, with
each page consisting of exercises for the fundamentals given in the goal task.
The final page of the course contains an estimation of the amount of minutes
it takes a average learner to solve all exercises.

5.1.9.1 Top-Level Decomposition of “Exam Simulation”

Time plays an important role in this scenario since the selected exercises
should be solvable within the specified timeframe. Therefore, the methods
that implement the scenario need to know about the time typically required
to solve an exercise. This information is represented in the resource metadata

5.1 Moderate Constructivist Competency-Based Scenarios 157

typicalLearningTime, which specifies the average time it takes a learner of
the target group (specified by the educational level) to read/process a resource.

In addition, methods need to reason about the time that is taken up by the
inserted exercises and the time left for the simulated exam. In the scenario,
the atom (remainingTime time) is used to keep track of the time that is still
left for additional exercises. It is initialized with the time originally assigned
to the scenario by the learner.

The following methods perform several estimations about the time avail-
able for exercises for a fundamental. These estimations are necessary to ensure
that exercises can be selected for all fundamentals given in the goal task. If
the methods did not restrict the time available for the exercises, then the first
fundamental will use up the available time and no exercises will be inserted
for later fundamentals.

Figure 5.63 contains the central methods of this scenario. The upper
method takes the current fundamental (the term that instantiates ?first)
and estimates the amount of time that can be assigned to the section that in-
serts exercises for this fundamental. The estimation takes place in the lines 5–
11. If r denotes the remaining time and l the amount of fundamentals still
necessary to process, then the time t that can be spend on exercises for the
current fundamental is defined as t = max{8, r

l+1}. That is, the remaining
time is approximately the ratio of time left and fundamentals left. If t is too
small, then a minimum value is assigned to it. The values were determined
from technical experiments: if t becomes too small, then no exercises can be
inserted.

The lower method in Figure 5.63 is applicable if all fundamentals were pro-
cessed, i. e., exercises for all fundamentals were inserted. If there is still time
left (lines 23–24), the exercise selection restarts and tries to insert additional
exercises to fill up the time of the simulated exam. Additionally, the precon-
ditions test whether an exercise was inserted during the last exercise selection
by comparing the currently remaining time (remainingTime t) with the time
remaining before the last exercise selection was performed (lastRemaining-
Time t). If both times are equal, then no exercise was inserted in the last
run, and hence it does not make sense to apply the method again (line 26).
Otherwise, the exercise selection process restarts (line 31).

The previous methods have estimated the approximate time that can be
allocated to the exercise selection for the current fundamental. The method
in Figure 5.64 further specifies the exercises that should be selected. If there
is still time left, then for each competency level, a task is inserted that selects
exercises solvable in the given timeframe. The time is not divided by 4 (for the
four competency levels), but by 2. This value was also determined by running
several test-runs and evaluating the resulting courses by pedagogical experts.

158 5 Course Generation in Practice: Formalized Scenarios

1 (:method (examSimulationH (?first . ?rest) ?allIds)

2 (

3 (remainingTime ?remainingTime)

4 (call > ?remainingTime 0)

5 (assign ?estimatedTimePerFundamental

6 (call / ?remainingTime

7 (call + 1 (call Length ?rest))))

8 (imply (call > ?estimatedTimePerFundamental 8)

9 (assign ?remainingTimePerFundamental

10 ?estimatedTimePerFundamental))

11 (imply (call <= ?estimatedTimePerFundamental 8)

12 (assign ?remainingTimePerFundamental 8))

13)

14 (

15 (!startSection Exercises (?first))

16 (examSimulationSingleFundamental

17 ?remainingTimePerFundamental ?first)

18 (!endSection)

19 (examSimulationH ?rest ?allIds)

20)

21)

22

23 (:method (examSimulationH nil ?allIds)

24 (

25 (remainingTime ?remainingTime)

26 (call > ?remainingTime 8)

27 (lastRemainingTime ?lastRemainingTime)

28 (not (call = ?remainingTime ?lastRemainingTime))

29)

30 (

31 (!!removeFromWorldState

32 (lastRemainingTime ?lastRemainingTime))

33 (!!addInWorldState (lastRemainingTime ?remainingTime))

34 (examSimulationH ?allIds ?allIds)

35)

36

37 ()

38 ()

39)

Fig. 5.63. Top-level methods for the scenario “exam simulation”

5.1 Moderate Constructivist Competency-Based Scenarios 159

(:method (examSimulationSingleFundamental

?remainingTimePerFundamental ?first)

(

(remainingTime ?remainingTime)

(call > ?remainingTime 0)

(assign ?timePerCL (call / ?remainingTimePerFundamental 2))

)

(

(getExercises ?timePerCL elementary ?first)

(getExercises ?timePerCL simple_conceptual ?first)

(getExercises ?timePerCL multi_step ?first)

(getExercises ?timePerCL complex ?first)

)

)

Fig. 5.64. Start of the exercise selection for a fundamental in the scenario “exam
simulation”

5.1.9.2 Exercise Selection in the Scenario “Exam Simulation”

The exercise selection in the scenario “exam simulation” is illustrated in Fig-
ure 5.65. Several preconditions of the method in the figure are replaced by
text to improve the readability. In brief, the method retrieves easy, medium
and difficult exercises that the learner has not yet seen and tries to find a
combination of an easy, medium and difficult exercise that fits in the time
assigned to the method.

The method first checks whether there is still time left (lines 3–4). Then it
retrieves all very easy and easy exercises and removes the open exercises.
(lines 6–7). Open exercises cannot be evaluated automatically and hence
should not be used in this scenario. This is repeated for medium and for
difficult and very difficult exercises (lines 9–10). If no exercises were found,
the method is not applicable (line 12). Otherwise, the axiom assignIterator
is used to find the first unseen easy exercise (lines 14–17). This is repeated
for the medium and difficult exercises (lines 19–20). If there exists a set of ex-
ercises that fulfills these criteria, then their typical learning time is retrieved
(lines 24–26). If they are not solvable in the timespan assigned to the method
(lines 28–30), then backtracking causes the selection of a different set of ex-
ercises (if any). Otherwise they are inserted (lines 33–35) and the remaining
time is updated (lines 36–37). A similar method exists that does not require
the elements to be new to the learner.

5.1.9.3 Example

An example of a course generated for the scenario “exam simulation” is shown
in Figure 5.66. It was generated on the same fundamentals as before (“the def-

160 5 Course Generation in Practice: Formalized Scenarios

1 (:method (getExercises! ?time ?cl ?c)

2 (

3 (remainingTime ?remainingTime)

4 (call > ?remainingTime 0)

5

6 retrieve very_easy and easy exercises

7 remove the open exercises

8

9 repeat for medium exercises

10 repeat for difficult and very difficult exercises

11

12 fail if no exercises were retrieved

13

14 (assignIterator ?easyExc ?allEasyExcsNotOpen)

15 (not (inserted ?easyExc))

16 (learnerProperty hasAlreadySeen ?easyExc ?seenEx1)

17 (same ?seenEx1 nil)

18

19 repeat for medium exercises

20 repeat for difficult and very difficult exercises

21

22 make sure that at least one exercise has been found

23

24 (typicalLearningTime ?easyExc ?time1)

25 (typicalLearningTime ?mediumExc ?time2)

26 (typicalLearningTime ?difficultExc ?time3)

27

28 (assign ?totalTime (call + ?time1 ?time2 ?time3))

29 (call >= ?time ?totalTime)

30 (assign ?remainingTimeNow

31 (call - ?remainingTime ?totalTime))

32)

33 (

34 (insertResourceOnce! ?easyExc)

35 (insertResourceOnce! ?mediumExc)

36 (insertResourceOnce! ?difficultExc)

37 (!!removeFromWorldState (remainingTime ?remainingTime))

38 (!!addInWorldState (remainingTime ?remainingTimeNow))

39)

40)

Fig. 5.65. Selecting exercises in the scenario “exam simulation”

5.2 Course Generation Based on Instructional Design Principles 161

Fig. 5.66. A course generated for the scenario “exam simulation”

inition of the derivative, resp., the differential quotient”, “the definition of the
derivative function” and the theorem “sum rule”) and for a time of 90 minutes.

This concludes the formalization of the scenarios based on moderate con-
structivist and competency-based pedagogy. The next section describes a sce-
nario based on principles of instructional design.

5.2 Course Generation Based on Instructional Design
Principles

According to Reigeluth [150], instructional design describes how to design
educational resources that are “effective”, “efficient”, and “appealing”. In the
following, I will describe Merrill’s “First Principles of Instruction”, a set of
guidelines that integrates results from several instructional design theories.

5.2.1 Merrill’s “First Principles of Instruction”

Merrill [115] surveys research done in instructional design [97, 6, 114, 45, 68,
128, 160, 164] and describes the common underlying principles. He identifies
five stages that he argues need to be present during the learning process in
order for successful learning to take place:

Problem. “Learning is facilitated when learners are engaged in solving real-
world problems.”

Activation. “Learning is facilitated when relevant previous experience is ac-
tivated.”

162 5 Course Generation in Practice: Formalized Scenarios

Demonstration. “Learning is facilitated when the instruction demonstrates
what is to be learned rather than merely telling information about what
is to be learned.”

Application. “Learning is facilitated when learners are required to use their
new knowledge or skill to solve problems.”

Integration. “Learning is facilitated when learners are encouraged to integrate
(transfer) the new knowledge or skill into their everyday life.” This integra-
tion happens foremost in collaboration with other learners. They should
have the possibility to reflect, discuss, and defend their new knowledge.

The extent to which each of these stages can be realized depends on the
learning environment. For instance, not all systems provide the functionalities
required for collaborative learning.

The following scenario is partly based on Merrill’s principles. One of its
design goals was to formalize a scenario that poses the smallest possible con-
straints on metadata. Sophisticated scenarios as described in the previous sec-
tion require the educational resources to be annotated with a great amount
of metadata, e. g., competency level, competency, and representation value.
Some of these metadata are not wide-spread, especially the ones related to
competencies. The scenario formalized in this section uses “standard”, estab-
lished metadata, such as difficulty level.

5.2.2 Scenario “Guided Tour”

A course generated for the scenario “guided tour” provides the learner with
the necessary resources to help him understand the target fundamentals in
depth. In contrast to the scenario “discover”, the prerequisites are included
in detail and the exercise and example selection primarily uses the difficulty
level. The sections in the course respect Merrill’s “First Principles”, as far as
possible. For each fundamental given in the goal task, and for each unknown
prerequisite fundamental, the following sections are created:

Introduction. This section arises a learner’s interest by presenting educational
resources of the type introduction.

Problem. This section inserts a real world problem for the fundamental.
Fundamental. This section presents the fundamental.
Explanation. This section contains educational resources that provide ex-

plaining and deepening information about the fundamental.
Illustration. This section provides opportunities for the learner to examine

demonstrations of applications of the fundamentals.
Practice. This section enables a student to actively apply what he has learned

about the fundamental.
Conclusion. This section presents educational resources that contain conclud-

ing information about the fundamental.
Reflection. This section provides the learner with an opportunity to reflect

and discuss his new knowledge.

5.2 Course Generation Based on Instructional Design Principles 163

1 (:method (guidedTour ?fundamentals)

2 ()

3 (

4 (!startSection GuidedTour ?fundamentals

5 (guidedTour ?fundamentals))

6 (learnFundamentalsGuidedTour ?fundamentals)

7 (reflect ?fundamentals)

8 (!endSection)

9)

10)

11

12 (:method (learnFundamentalsGuidedTour (?c . ?rest))

13 ()

14 (

15 (learnPrerequisitesFundamentalsGT ?c)

16 (learnSingleFundamentalGT ?c)

17 (learnFundamentalsGuidedTour ?rest)

18)

19)

Fig. 5.67. Methods used for the top-level decomposition of the scenario “guided
tour”

5.2.2.1 Top-Level Decomposition of “Guided Tour”

The two methods displayed in Figure 5.67 perform the top-level decompo-
sition: for each target fundamental f , first a task (learnPrerquisites-
FundmentalsGT f) is created that inserts sections for all prerequisites of
f that are unknown to the learner. Previously presented prerequisites are
automatically detected and hence duplications are avoided. Then, the task
(learnSingleFudamentalGT f) causes the creation of a section for the fun-
damental f . The final task causes the method to call itself recursively. The
method for the base case (when all fundamentals were processed) is not shown.

The task (learnSingleFudamentalGT f) is processed by the method il-
lustrated in Figure 5.68. First, it tests whether the section for the current fun-
damental was already created. In this case, the second precondition-subtask is
applied. Since it has no subtasks, the task is achieved. This way, duplication
of sections which might happen due to the handling of prerequisites in this
scenario are avoided. In case the section was not yet created, the subtasks of
the method create the structure described above. The final subtask adds an
atom in the world state that represents that the current task was achieved.

5.2.2.2 Sections “Introduce”, “Explanation” and “Conclusion”

The methods in Figure 5.69 handle the insertion of educational resources in
the sections “introduction”, “explanation” and “conclusion”. They follow the

164 5 Course Generation in Practice: Formalized Scenarios

1 (:method (learnSingleFundamentalGT ?c)

2 (

3 (not (achieved (learnSingleFundamentalGT ?c)))

4)

5 (

6 (!startSection Title (?c)

7 (learnSingleFundamentalGT (?c)))

8 (introduceByIntroductionSection ?c)

9 (problemSection ?c)

10 (insertFundamentalSection ?c)

11 (explainSection ?c)

12 (illustrateWithIncreasedDiffSection ?c)

13 (trainWithIncreasingDiffSection ?c)

14 (concludeSection ?c)

15 (!endSection)

16 (!!addInWorldState

17 (achieved (learnSingleFundamentalGT ?c)))

18)

19

20 ((achieved (learnSingleFundamentalGT ?c)))

21 ()

22)

Fig. 5.68. Creating a section for a fundamental in the scenario “guided tour”

same schema: a resource for the given fundamental and of a learning context
that corresponds to the learner’ educational level is inserted. If these methods
cannot be applied, then an analogous set of methods relaxes the constraint
on the educational level and searches for resources for all allowed educational
levels.

5.2.2.3 Sections “Illustration” and “Practice”

The method in Figure 5.71 handles the insertion of examples. Depending on
the learner’s current competency level, a set of examples is selected. For in-
stance, if the learner has a low competency level (≤ 2), then five very easy, five
easy, three medium examples and one difficult and one very difficult example
are inserted. The general rule implemented in the example selection is that
most of the examples should correspond to the learner’s current competency
level. He should neither be demotivated nor bored. In addition, a sufficiently
large amount of examples is presented. The given number is the maximum
number if only a smaller amount of these resources exists, then the remaining
ones are skipped. The methods for the subtask insertResourcesOfType first
try to find sufficient resources that correspond to the learner’s educational
level, but relax the constraint if necessary. The methods are not shown in this
volume. An analogous method exists that handle the exercise selection.

5.2 Course Generation Based on Instructional Design Principles 165

1 (:method (introduceShort! ?c)

2 (

3 (learnerProperty hasEducationalLevel ?el)

4 (assign ?resources

5 (call GetResources

6 ((class Introduction)

7 (relation isFor ?c)

8 (property hasLearningContext ?el))))

9 (assignIterator ?r ?resources)

10)

11 (

12 (insertAuxOnceIfReady! ?r ?c)

13)

14)

15

16 (:method (explain! ?c)

17 (

18 (learnerProperty hasEducationalLevel ?el)

19 (assignIterator ?r

20 (call GetResources

21 ((class Remark)

22 (relation isFor ?c)

23 (property hasLearningContext ?el))))

24)

25 (

26 (insertAuxOnceIfReady! ?r ?c)

27)

28)

29

30 (:method (conclude! ?c)

31 MethodConclude!Ideal

32 (

33 (learnerProperty hasEducationalLevel ?el)

34 (assignIterator ?r

35 (call GetResources

36 ((class Conclusion)

37 (relation isFor ?c)

38 (property hasLearningContext ?el))))

39)

40 (

41 (insertAuxOnceIfReady! ?r ?c)

42)

43)

Fig. 5.69. Inserting texts in the scenario “guided tour”

166 5 Course Generation in Practice: Formalized Scenarios

Fig. 5.70. A course generated for the scenario “guided tour”

5.2.2.4 Example

Figure 5.70 contains a screenshot of a course generated for the scenario
“guided tour” and the goal fundamentals “the definition of the derivative,
resp., the differential quotient”, “the definition of the derivative function”
and the theorem “sum rule”. The difference to the course generated for the
scenario “discover” is clearly visible: here, all prerequisites are included in
their own section.

5.2 Course Generation Based on Instructional Design Principles 167

1 (:method (illustrateWithIncreasedDiff ?c)

2 (

3 (learnerProperty hasCompetencyLevel ?c ?competencyLevel)

4 (call < ?competencyLevel 2)

5)

6 (

7 (insertResourcesOfType ?c Example very_easy 5)

8 (insertResourcesOfType ?c Example easy 5)

9 (insertResourcesOfType ?c Example medium 3)

10 (insertResourcesOfType ?c Example difficult 1)

11 (insertResourcesOfType ?c Example very_difficult 1)

12)

13

14 (

15 (learnerProperty hasCompetencyLevel ?c ?competencyLevel)

16 (call >= ?competencyLevel 2)

17 (call < ?competencyLevel 4)

18)

19 (

20 (insertResourcesOfType ?c Example very_easy 3)

21 (insertResourcesOfType ?c Example easy 4)

22 (insertResourcesOfType ?c Example medium 4)

23 (insertResourcesOfType ?c Example difficult 2)

24 (insertResourcesOfType ?c Example very_difficult 2)

25)

26

27 (

28 (learnerProperty hasCompetencyLevel ?c ?competencyLevel)

29 (call >= ?competencyLevel 4)

30)

31 (

32 (insertResourcesOfType ?c Example very_easy 1)

33 (insertResourcesOfType ?c Example easy 2)

34 (insertResourcesOfType ?c Example medium 2)

35 (insertResourcesOfType ?c Example difficult 4)

36 (insertResourcesOfType ?c Example very_difficult 4)

37)

38)

Fig. 5.71.

6

Implementation and Integration

In this chapter, I describe technical aspects of Paigos. The implementation,
i. e., the Java classes and interfaces, is described in the first section. The in-
terfaces work on the level of tasks: they take a pedagogical task as input and
return a course that achieves the task as a result. The second section describes
how the interfaces are used in the integration of Paigos in a Web-based learn-
ing environment, in this case ActiveMath. The section illustrates the advan-
tages that arise in a tightly coupled integration, where different components of
the learning environment have direct access to the course generator: whenever
a component needs to make informed decisions about content to present to the
learner, it can use the functionalities offered by the course generator. Thus,
knowledge is not duplicated and a coherent pedagogical approach regarding
content selection is ensured in the overall system, since a single component,
the course generator, is responsible for this functionality. The step from a
tight, system confined integration to a service architecture is described in the
final section of the chapter. In this setting, an external learning environment
registers its repository at the course generation Web-service and subsequently
can access Paigos’s functionalities. The interfaces partly remain the same:
pedagogical tasks are sent to the course generating service, which returns a
course as a result. However, some additional interfaces are required for the
repository registration, such as exchanging information about the metadata
of the educational resources. As a result, if a system needs to offer course
generation to its learners, it can use the functionalities offered by Paigos and
is not required to implement the pedagogical knowledge itself.

6.1 Implementation

Since the most relevant parts of Paigos are formalized in the course gener-
ation planning domain, the actual Java implementation of Paigos consists
only of a small number of classes.

C. Ullrich: Courseware Generation for Web-Based Learning, LNAI 5260, pp. 169–192, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

170 6 Implementation and Integration

Fig. 6.1. An overview on the classes relevant for course generation

Figure 6.1 presents an uml overview on the classes that implement the
course generator. The class Task (middle bottom right in the figure) represents
a pedagogical task as described in Section 4.3. It consists of a pedagogical
objective and a list of identifiers of educational resources.

The class TutorialInteraction serves to associate the users, pedagogical
tasks and the courses that were generated for the task and for the individ-
ual users. It is initialized with a task and, if needed, an initial world state.
The initial world state is mostly used when processing dynamic tasks (see
Section 4.8). There, some resources have to be considered as inserted in the
course in order to prevent their selection during the instantiation of the task.

In a TutorialInteraction object, the first invocation of the method
getCourse starts the course generation. Once the course is generated, it is
stored in the tutorial interaction, the boolean property wasInvoked is set to
true, and the course is passed to the object that requested it. If the course is
requested again at a later time, the stored course is returned.

The interface Solver serves to abstract from the classes that implement
the course generation process. This eases a potential change of the engine
that realizes the course generation (e. g., as done in ActiveMath whose
first course generator was implemented using an expert system). Classes that
implement the Solver interface need to provide the method solve that takes
a task, a user identifier and an initial world state as input and returns an
OMDoc document. In Paigos, the class JShop2Planner implements this
interface and encapsulates jshop2.

6.2 Integration of PAIGOS in ActiveMath 171

During course generation, the class JShop2Planner accesses the Mediator
using the interface ResourceQuery and the learner model using the interface
LearnerProperty. Similar to the mediator, classes that implement the inter-
face LearnerProperty should cache queries, too. However, this cache becomes
invalid much faster than the mediator cache since the learner’s properties usu-
ally change more often than the content. In ActiveMath, the cache is cleared
after each planning process.

The class CourseGenerator manages the tutorial interactions and is used
by those components that need to generate courses. It is implemented as a
singleton pattern, thus a single object implements this class. The first invo-
cation of the constructor of the class creates the CourseGenerator object.
Later invocation of the constructor returns this single object (the singleton).
Its principal method is achieveTask that takes as input the user identifier
of the learner the course will be generated for (userId), a task (task), and
optionally a list that represents the initial world state (initialWorldState),
actually a list of atoms that are added into the world state in addition to the
atoms that make up the original world state, see Section 4.4.3). Using this
information, the CourseGenerator singleton creates tutorial interactions and
then starts the course generation using the method getCourse. The result
of the planning process is an OMDoc document. The interface of the class
CourseGenerator is the following:

public OMDoc achieveTask(String userID, Task task)

public OMDoc achieveTask(String userID, Task task,

List initialWorldState)

6.2 Integration of PAIGOS in ActiveMath

In this section, I describe the integration of Paigos in the Web-based learning
environment ActiveMath. I first describe ActiveMath, and then explain
the integration in detail, starting with the graphical user interface, followed
by the basic technique used for including references to learning-support ser-
vices (Section 6.2.2), and then provide details on the specific services that
were integrated: a concept map (Section 6.2.3.1), an open learner model (Sec-
tion 6.2.3.2), and an exercise sequencer (Section 6.2.3.3). Section 6.2.4 de-
scribes how the symbolic representations of narrative bridges generated dur-
ing planning are transformed into “real” text. The final section explains how
Paigos is used as a service by other ActiveMath components.

6.2.1 Course Generation in ActiveMath

Access to content using the course generator is an important part of Active-

Math. The manually authored courses contain only parts of the available
educational resources. The remaining resources are only accessible using the

172 6 Implementation and Integration

search tool or the course generator. In addition, special care was taken to en-
sure that the user interface that handles the user’s access to Paigos is easy to
use. In the LeActiveMath project, the interface was evaluated and revised
twice, first by a review performed by the Fraunhofer Institute for Industrial
Engineering IAO and then in a formative evaluation by usability experts of the
School of Informatics at the University of Edinburgh (see Section 7.2). In the
following, I describe the course generation user interface using the Figures 6.2
to 6.7.

Fig. 6.2. The main menu of ActiveMath

Figure 6.2 contains a screenshot of the main menu of ActiveMath. The
entries on the left hand side correspond to manually authored books. The
menu on the right hand side allows a learner to start the course generation.
In ActiveMath, this process is called “personal book creation”. Since the
concept of course generation is unknown to almost all learners, an extensive
help section explains the general approach and the scenarios in detail. The text
on the link that start the course generation is phrased such that it motivates
to experiment with it (“Just try it!”). If the learner follows the link, a step-by-
step guide (wizard) leads him through the selection of the course generation
parameters, i. e., the scenario and the target fundamentals.

Figure 6.3 illustrates the first step of the course generation wizard. There,
the learner selects the mathematical domain the target fundamentals will be
chosen from. In ActiveMath, each of the possible choices is represented by
a grouping. Just like a table of contents a grouping is an OMDoc omgroup
element that consists of other omgroup elements and references to educational
resources (for additional details about the representation of table of contents,
see the following section). However, a grouping is not used to present a course,
but to collect the fundamentals the learner can select from for course gen-

6.2 Integration of PAIGOS in ActiveMath 173

Fig. 6.3. Selecting the general area of interest

eration. Making OMDoc resources available for course generation simply
requires authoring a new grouping and registering it in the ActiveMath

configuration. Being a regular OMDoc element, a grouping is authored using
the standard OMDoc authoring tools.

Fig. 6.4. Selecting the scenario

In the next step, illustrated in Figure 6.4, the learner selects the scenario.
Each scenario is briefly described, the most relevant words being highlighted.
A click on the terms in bold font opens the help menu with a more detailed
description of the scenario. The evaluations showed that providing detailed
help is a necessary requirement if students are to used course generation: most
learners are not used to the possibility of creating books, let alone different
types of books.

174 6 Implementation and Integration

Fig. 6.5. Selecting the target fundamentals

Once the learner has chosen a scenario, he needs to select the target fun-
damentals (Figure 6.5). In this step, the table of contents represented by the
grouping selected in the first step is presented to the learner. The learner can
select one of the sections or subsections by marking the respective radio but-
ton. He can navigate through the table of contents by clicking on the chapter
names. Each section contains a brief text that describes the content of the
section. This information needs to be provided by the author of the grouping.

In the screenshot of Figure 6.6, the learner has selected the first section
and the wizard presents its subsections.

When the learner has completed his selection, his choices are presented on
a summary page (Figure 6.7). There, he can name the book and provide a
summary. Clicking on “Next” starts the course generation process.

6.2.2 Dynamically Generated Elements in a Table of Contents

ActiveMath uses the OMDoc elements omgroup and ref for representing
tables of contents.

• the omgroup element represents and structures a table of contents in the
following way: either an omgroup consists only of omgroup elements, in
which case it represents a section; or it consists of ref elements and then
represents a page in a course.

• the ref element references an educational resource. The value of its xref
attribute contains the identifier of the resource that will be included into
the page.

6.2 Integration of PAIGOS in ActiveMath 175

Fig. 6.6. Expanding a section

Fig. 6.7. The summary page

176 6 Implementation and Integration

This approach works fine when a course consists only of previously au-
thored educational resources. Yet, some elements of courses generated by
Paigos depend on the specific resources contained in the course and can-
not be realized by using pre-authored objects only. This includes references
to learning-support services, narrative bridges and dynamic tasks.

Therefore, the integration of Paigos in ActiveMath required the de-
velopment of a new element, called dynamic-item, that serves as a generic
container for these dynamic cases. Dynamic-item elements are included into
a table of contents in the same way as ref elements, but instead of referenc-
ing an existing educational resource they contain the information necessary
to generate the resource on-demand. These dynamic items are presented on a
page in the same way as other educational resources.

The general structure of the element dynamic-item is defined by the dtd

shown in Figure 6.8. A dynamic item has a type specifying whether the item
is a dynamic task, a call to a learning-support service or a symbolic repre-
sentation for text generation. The attributes servicename and queryname
allow further differentiating the specific item to be generated by providing
the exact service and method of the service to be called. The optional chil-
dren of a dynamic-item element specify information about the context: rele-
vant learning objects (using the ref element), mathematical terms in Open-
Math format (OMOBJ), and additional parameters given as property-value pairs
(queryparam).

The following sections describe how dynamic elements are used for the
integration of learning-support services.

<!ELEMENT dynamic-item (ref*|queryparam*|OMOBJ*)>

<!ATTLIST dynamic-item

type (dynamicTask|learningService|text) #REQUIRED

servicename CDATA #REQUIRED

queryname CDATA #IMPLIED>

<!ELEMENT queryparam EMPTY>

<!ATTLIST queryparam

property CDATA #REQUIRED

value CDATA #REQUIRED>

Fig. 6.8. The document type description (DTD) of the dynamic item element

6.2.3 Usage of Learning-Support Services in ActiveMath

The ActiveMath system offers a variety of learning-support services. This
section focuses on how these services are integrated into courses generated by
Paigos.

6.2 Integration of PAIGOS in ActiveMath 177

During course generation, references to learning-support services are in-
serted using specific methods and operators. In ActiveMath, these refer-
ences are rendered as links. Thus, for the learner, are not different from other
interactive elements such as exercises and seamlessly blend into the course.
Technically, the integration happens in the following way:

1. During planning, the course generator applies the operator
(!insertLearningService serviceName queryName

(r 1 ... r n) (p 1 v 1 ... p m v m))

where r x are resource identifiers and p y and v y denote property-value
pairs.

2. After a plan was found, the above operator triggers the creation of a
dynamic item that represents the above service call:
<dynamic-item type="learningService" servicename="serviceName "

queryname="queryName ">

<ref xref="r 1" />

...

<ref xref="r n" />

<queryparam property="p 1" value="v 1" />

...

<queryparam property="p m" value="v m" />

</dynamic-item>

3. When the learner visits a page that contains a dynamic item, the presen-
tation system converts the dynamic item into the requested output format
(e.g., html) and displays it. The rendered element is presented like any
other interactive element: it uses the same layout and is started by a click
on a link.

I will now describe three services that were integrated using this approach.

6.2.3.1 Interactive Concept Mapping Tool

The interactive Concept Mapping Tool (iCMap, [108]) helps the learner to
reflect on his mathematical knowledge by providing a framework for the visu-
alization and construction of structures in a mathematical domain. It supports
the learning process by verifying the concept map constructed by the learner
and by suggesting reasonable changes to the created map.

Paigos employs the concept mapping tool in two different ways: the mode
display presents a complete concept map to the learner. This is used by, e. g.,
the scenario “connect” to offer the learner with an opportunity to inspect a
visual representation of the relationships between the fundamentals covered
in the course. In the mode solve, the learner’s task is to construct a concept
map on her own, using a given set of fundamentals.

In order to create dynamic exercises, iCMap takes the following parame-
ters from the course generator as input: a set of OMDoc references pointing
to the initial fundamentals to be displayed (the central fundamentals), a set

178 6 Implementation and Integration

of pairs (relationType depth), and the mode-string (with the values solve
and display). Roughly speaking, the concept map contains the initial funda-
mentals C and all other fundamentals that are connected to elements of C by
the given set of relations up to the given depth. More precisely:

Central Fundamentals. For each central fundamental all related resources are
added to the concept map exercise. The relations taken into account are
specified in the parameter relationType:

Relation Type and Depth. The parameter relationType represents the rela-
tion types (as defined in the oio) which are used to compute the additional
resources to be presented to the learner. A depth parameter is attached
to each specified relation representing the maximum distance iCMap will
follow to compute neighboring learning items. Each node N that is added
to the concept map meets one of the following conditions:
1. N is a node representing a central fundamental, or
2. a relation type r with depth rn defined such that N is connected by

the relation r over at most rn nodes.
Mode. The mode specified with the parameter queryname determines how

the concept map exercise will be presented to the learner. If the mode is
display, all computed nodes and all edges of the given types are added to
the workspace; the learner is told to verify the map and, if applicable, to
complete it. Launching an exercise with mode solve starts iCMap with
an empty concept map. All the nodes determined as central fundamentals
and all those computed by iCMap are added to the learner’s palette.
Therefore, in mode solve, the learner has to create the concept map by
herself.

Example 6.1. The following operator triggers the creation of an iCMap exer-
cise for the resource “definition of the average slope”:

(!insertLearningService CMap display (def_average_slope)

(requires 1.0 isRequiredBy 1.0

isA 1.0 inverseIsA 1.0))

Example 6.2. The application of the above operator creates the following dy-
namic item:

<dynamic-item type="learningService" servicename="CMap"

queryname="display">

<ref xref="def_average_slope" />

<queryparam property="requires" value="1.0" />

<queryparam property="isRequiredBy" value="1.0" />

<queryparam property="isA" value="1.0" />

<queryparam property="inverseIsA" value="1.0" />

</dynamic-item>

Figure 6.9 shows the presentation of the dynamic element in Active-

Math. Figure 6.10 contains of screenshot of the resulting workbench of the
iCMap exercise.

6.2 Integration of PAIGOS in ActiveMath 179

Fig. 6.9. Presentation of a dynamically generated concept mapping tool exercise in
ActiveMath

Fig. 6.10. The workbench of a dynamically generated concept mapping tool exercise

6.2.3.2 Open Learner Model

An Open Learner Model [olm, 35] provides learners with a possibility to
inspect and modify the beliefs that the learner model holds about the mastery
or competencies of the learner. An olm for ActiveMath was developed in
the LeActiveMath project.

The course generator uses the olm for the reflection phase to encourage
the learner to reflect about her learning progress regarding the learned fun-
damentals. It is started with a list of fundamentals and a competency, which
define the initial items presented on the olm workbench. References to the
olm are created using the following operator:

180 6 Implementation and Integration

(!insertLearningService OLM display (r 1 ... r n) (competencyID competency))

The application of the above operator results in the following dynamic
item:

<dynamic-item type="learningService" servicename="OLM"

queryname="display">

<ref xref="r 1" />

...

<ref xref="r n" />

<queryparam property="comptencyID" value="competency " />

</dynamic-item>

Example 6.3. The following operator serves to insert a reference to the olm

that displays the fundamental “definition of the derivative function” and the
competency that aggregates all eight mathematical competencies.

(!insertLearningService OLM display (def diff f) (competencyId competency))

Example 6.4. The above operator is transformed into the following dynamic
item:

<dynamic-item type="learningService" servicename="OLM" queryname="display">

<ref xref="def_diff_f" />

<queryparam property="competencyId" value="competency" />

</dynamic-item>

Fig. 6.11. The presentation of a dynamically generated link to the Open Learner
Model

Figure 6.11 shows the link generated for the above example and Figure 6.12
an example of the workbench of the olm after the learner has performed a
few exploration steps.

6.2.3.3 Exercise Sequencer

The exercise sequencer presents to the learner a dynamically selected sequence
of exercises that leads her towards a higher competency level. This functional-
ity differs from the exercise selection of the course generator: Paigos generates

6.2 Integration of PAIGOS in ActiveMath 181

Fig. 6.12. The workbench of the Open Learner Model

a sequence of educational resources which is adapted to the learner at gen-
eration time, but once it is generated, it remains static. This behavior was a
design decision to avoid confusion of the learner arising from pages changing
over and over again as reported by De Bra [30].

In contrast, the exercise sequencer is completely dynamic. It selects an
exercise, presents it to the learner in a window separate from the current
course, and depending on the learner’s problem-solving success provides feed-
back and terminates or selects a new exercise, thus starting the cycle again.
The selection algorithm is based on competency levels.

For the selection of the exercises, the sequencer uses the course gen-
erator. It requests the course generator to select an exercise adequate to
the current competency level of the learner using the pedagogical task
trainWithSingleExercise!. The task reuses the pedagogical knowledge of
Paigos, thus following the same principles and avoiding different ways of
exercise selection.

References to the exercise sequencer created by the course generator in-
clude the fundamental that will be trained. Additionally, it is possible to
specify the algorithm used by the sequencer. However, currently only the
competency based algorithm is implemented. A link to a sequencer is created
using the following operator, where r stands for the fundamental that will be
trains and algorithm is the identifier of the algorithm used for the exercise
selection.

(!insertLearningService ExerciseSequencer algorithm (r))

182 6 Implementation and Integration

The application of the above operator results in the following dynamic
item:

<dynamic-item type="learningService" servicename="ExerciseSequencer"

queryname="algorithm ">

<ref xref="r " />

</dynamic-item>

Example 6.5. The following operator inserts a reference to an exercise se-
quencer that trains the fundamental “the definition of the derivative function”
using the algorithm based on competency-levels.

(!insertLearningService ExerciseSequencer TrainCompetencyLevel (def_diff_f))

Example 6.6. The above operator is transformed into the following dynamic
item:

<dynamic-item type="learningService" servicename="ExerciseSequencer"

queryname="TrainCompetencyLevel">

<ref xref="def_diff_f" />

</dynamic-item>

Fig. 6.13. The presentation of a dynamically generated link to the exercise se-
quencer

Figures 6.13 and 6.14 contain screenshots of the rendering of the link to
the exercise sequencer and of an exemplary interaction.

6.2.4 Template-Based Generation of Narrative Bridges

In this section I demonstrate how the symbolic representations of bridging
texts generated during course generation can be transformed into texts.

6.2 Integration of PAIGOS in ActiveMath 183

Fig. 6.14. An exemplary interaction with the exercise sequencer

6.2.4.1 NLG vs. Templates

Reiter [152] distinguishes between two principally different techniques for text
generation. While natural language generation (NLG) is based on linguistic
and knowledge-based techniques, the template-based approach is based on the
manipulation of character strings, done at character level, without a deeper,
semantic representation of text. According to [152], the advantages of NLG
include the following:

Maintainability. NLG is easier to adapt than template-based techniques, es-
pecially if large amounts of texts are generated. Since NLG works on a
higher level of abstraction, it uses a limited set of rules to create a po-
tentially vast amount of individual texts. In a template-based approach,
each of these text needs to specified beforehand. Therefore, whereas per-
forming a change in NLG requires updating a limited amount of rules, in
a template-based approach all involved templates need to be updated.

Improved text quality. NLG uses various techniques to improve text quality.
For instance, aggregation is used to sum up several individual propositions
in a single sentence.

A principal disadvantage of NLG is its need of an explicit representation
of the content that is to be communicated, i. e., for learning the content that
is being learned. Without this representation, no texts can be generated. In
addition, the generation requires a macro-planner and micro-planner, which
necessitates specialized expertise for their development, since only prototyp-
ical toolkits are available. They also make the generated language hard to
internationalize.

184 6 Implementation and Integration

In contrast, template-based approaches are widely-used because of their
straightforward implementation. Their development and application is sup-
ported by several frameworks, for instance using phrases.

In ActiveMath, the purpose of generated texts is to make explicit the
structure of a course by displaying the pedagogical purpose of sections. It is
possible to formulate the templates in a way independent of the fundamentals
actually taught. Each purpose is expressed by a specific phrase, hence tech-
niques such as aggregation are not required. In addition, the amount of re-
quired texts is limited. All in all, the pedagogical strategies encompass about
twenty sections that need to be augmented by texts. Therefore, manually
maintaining the texts is feasible.

Reiter [152] summarizes his comparison of NLG and template-based
text generation as follows: “[i]f a certain portion of the output text never
varies . . . it would be silly to generate it with NLG, and much more sensible
to simply use canned text for this portion of the document”. This statement
and the above discussion provide ground for the claim that a template-based
approach can be adequate for the generation of bridging texts. I now describe
the technical aspects of the generation.

6.2.4.2 Generation of Narrative Bridges in LeActiveMath

In ActiveMath, a 2-stage presentation pipeline handles the rendering/pre-
sentation of the learning materials contained in a course [190]. In the first
step, the educational resources referenced in the table of contents of a course
are fetched from the database, transformed into the requested output format
and cached. In the second step, these educational resources are composed
into a complete page, and the resulting page is rendered for the learner. If
an educational resource was already transformed, it is directly retrieved from
the cache, in order to avoid repeated transformation of the same educational
resource.

In contrast, dynamic items (such as symbolic representations of bridging
texts) are not fetched from a database but instantiated on demand. More
specifically, the controller responsible for the presentation calls the service
specified in the dynamic item by the attribute servicename and passes the
remaining attributes and sub-elements as parameters. In the case of dynamic
items of type text, the corresponding service uses the parameters to determine
the adequate template t and returns an OMDoc element whose text body
consists of t. If a template is available in several languages, a specific text body
is generated for each language (catering for the case that the user changes the
language any later time). Because the texts are stored in OMDoc elements,
they can be cached and reused using the mechanisms of the presentation
pipeline.

This approach allows for a flexible on-demand generation of texts. The
texts are generated at view time, i. e., when the learner actually visits the page
for the first time. Therefore, the templates can integrate up-to-date learner

6.2 Integration of PAIGOS in ActiveMath 185

information, such as user name, competency-level, etc.1 If texts were generated
directly after planning, some information might not be available or quickly
become outdated (such as competency-level).

For the instantiation of the templates, ActiveMath uses a common in-
ternationalization framework that pairs a set of keywords with texts. Such
a pair is called a phrase. These phrases are stored in text files, one for each
language. This makes editing and extending phrases easily possible for non-
technical experts, e. g., translators.

Figure 6.15 contains a selection of phrases used for English bridging texts.
The carpet character “#” denotes comments. The keywords at the left hand
side of the equals sign are the phrases determined during the course genera-
tion. For the presentation, they are replaced by the texts following the equals
sign. The last two phrases provide an example of a method-induced change of
scenario. As described in Section 4.9.2, in the scenario rehearse two different
sections present a sequence of examples. The first section serves to remind
the learner how to apply the fundamental. The second section, placed after
an exercise section, is used to provide additional examples. Because the same
methods are used for the selection, the context is changed prior to the second
examples selection.

Figure 6.16 shows a html rendering of the task of Example 4.21 (Sec-
tion 4.9.2). The text is emphasized in order to convey to the learner that the
text is on a different level of abstraction than the remaining content displayed
on the page.

6.2.5 PAIGOS as a Service in ActiveMath

The most frequent usage of Paigos in ActiveMath is to generate a course
on request of the learner. Equally important and a good illustration of the
features made possible by a course generator service is its usage by other com-
ponents in ActiveMath whenever they require pedagogically based retrieval
of content. By using the course generator, these components do not have to
implement themselves the knowledge required to make the selection. This
reduces development time and ensures a coherent pedagogical look-and-feel,
since the same pedagogical principles are used for content selection, regardless
of the component.

Previously, I described how the exercise sequencer uses Paigos to select
the exercises the learner should work on. In the following, I describe two
additional components, a suggestion component and an assembly tool, that
use Paigos’s functionalities. The third subsection explains how Paigos is
used to enhance the learner’s interaction possibilities with courses presented
in ActiveMath. All components use the interface described in Section 6.1.

1 This feature is not yet used in the current version of ActiveMath.

186 6 Implementation and Integration

phrases for scenario "Discover"

text.NLGGenerator.Item.Discover.Introduction=Why is the mathematical

content presented in this chapter important? The following section

tries to answer that question.

text.NLGGenerator.Item.Discover.Prerequisites=This paragraph contains

the prerequisite knowledge necessary to understand the content of this

section.

text.NLGGenerator.Item.Discover.Develop=Careful now! This section

contains the principal content and some examples.

text.NLGGenerator.Item.Discover.Practice=Practice makes perfect. This

section contains exercises to practice the application of the

content.

text.NLGGenerator.Item.Discover.Connect=In this section, you will

discover the connections to other content.

text.NLGGenerator.Item.Discover.Reflect=Please think about your

learning process: How did you proceed? Did you understand everything?

If not, try to look up the necessary content using the system.

text.NLGGenerator.Item.Discover.Examples=Have a close look! In this

section you will see example applications of the content.

phrases for scenario "Rehearse"

text.NLGGenerator.Item.Rehearse.Develop=Do you still remember what the

goal content is about? Here you can have a second look at it.

text.NLGGenerator.Item.Rehearse.Connect=What else can the content be

used for? That’s the topic of the following section.

text.NLGGenerator.Item.Rehearse.Examples=If you do not recall how to

apply the goal content, have a look at these examples.

text.NLGGenerator.Item.RehearseDeeper.Examples=Here you find

additional examples of the goal content.

Fig. 6.15. A selection of bridging texts

6.2 Integration of PAIGOS in ActiveMath 187

Fig. 6.16. A rendered bridging text

6.2.5.1 Suggestion Component

ActiveMath’s suggestion component [103] analyzes the user’s interactions
with ActiveMath to detect potential learning problems. Based on the in-
teractions, diagnoses are formed. The diagnoses are addressed by actions that
provide remediating feedback, i. e., suggestions, in case problems are diag-
nosed. Suggestions consists of navigational hints (e. g., pointing at a specific
page in the table of contents) or of educational resources (e. g., an example
that illustrates the fundamental that learner seems to not have understood).
For the latter case, the suggestion component uses Paigos: the action only
specifies the pedagogical task that can be used to address the diagnosed prob-
lem; the actual educational resources to be presented are determined by the
course generator.

6.2.5.2 Assembly Tool

ActiveMath’s assembly tool allows a learner to create a book on her own
by dragging educational resources from ActiveMath (but also any other re-
source addressable by an uri). The tool was designed to support the learner’s
meta-cognitive reasoning, self-regulated learning and active engagement with
the content.

The principal actions supported by the assembly tool are the creation of
structured courses by adding chapters and drag-and-drop of resources into a
table of contents. In addition, a learner has access to Paigos’s functionality
using a context menu. She can select the direct insertion of resources that
fulfill a pedagogical task specified by the learner or insert a dynamic task that
is achieved at a later time. Figure 6.17 contains a screenshot that illustrates
the integration. In the example, the learner uses the course generator to select
an example for “the definition of the difference quotient”.

The interface allows an intuitive creation of a pedagogical task. First, the
user selects a fundamental by clicking on it. This fundamental is the target
fundamental of the pedagogical task. Then, the learner selects the pedagogical
objective from the context menu. If the learner selected the direct insertion of
elements, then the complete task is sent to the course generator and the result-
ing resources are added in the table of contents. Otherwise, in case the learner
selected a dynamic item, the dynamic item is inserted in the table of contents
and instantiated at the time the learner views the page in ActiveMath.

The assembly tool runs on the client and thus illustrates that the course
generator interfaces allow server-client communication.

188 6 Implementation and Integration

Fig. 6.17. Screenshot of the assembly tool

Fig. 6.18. The item menu for requesting additional content

6.2.5.3 Supporting the User’s Initiative

In addition to the generation of complete courses on request of the learner,
the integration of Paigos in ActiveMath offers user-triggered course exten-
sion as an additional feature that supports the learner’s active engagement in
accessing the content.

In case the learner wishes to see additional educational resources about
a fundamental displayed in a course, she can trigger the execution of a ped-
agogical task (e.g., train) by selecting them from a drop-down list. Then,
the task is processed by Paigos and the resulting educational resources are

6.3 Course Generation as a Web-Service 189

presented to her. Upon the learner’s request, the resources are added to the
current page. Figure 6.18 contains a screenshot of the interface. The interface
uses the condition element provided in the description of the task processable
by Paigos (“public” tasks, see Section 4.3) to evaluate efficiently whether a
task can be fulfilled. If it cannot be fulfilled, then the corresponding menu
entry is hidden.

Compared to the search tool available in ActiveMath, the item menu
has the advantage that content is retrieved in “one click” using pedagogical
knowledge. Using the search tool to retrieve, say, an easy exercise, requires
knowledge about the ActiveMath’s metadata. The item menu only requires
following a link.

6.3 Course Generation as a Web-Service

In this section, I describe how Paigos can be made available as a Web-
service.2 I start by describing a survey we conducted in order to determine
the specific functionalities required by potential clients. From the collected
requirements, we inferred a set of interfaces (Section 6.3.1); in contrast to
a course generator integrated within a Web-based e-learning system as de-
scribed in the previous section, a course generator Web-service (cgws) needs
to provide additional information, e. g., about the metadata it uses and the
functionalities it offers. The final section describes the interactions between
the clients and the cgws.

In order to assess the potential interest and the requirements of third-
parties regarding a cgws, we designed a survey of 13 questions inquiring about
general and specific interests of clients (e. g., interest in generating complete
courses and retrieval of single resources), but also technical questions, e. g., the
used metadata schema, whether a learner model is available, and the expected
format of the results.

The survey was sent to three main mailing lists whose subscribers are
mostly developers and researchers in the field of technology supported learn-
ing: Adaptive Hypertext and Hypermedia,3 International Forum of Educational
Technology & Society4 and the Internal Mailinglist of the European Network
of Excellence Kaleidoscope.5

25 questionnaires were completed. About 65% of the participants showed
an interest in a cgws, including 33% being strongly interested. The majority
of the participants were using lom, ims cp and Scorm. Interestingly, even
parties whose Web-based e-learning systems did not include a learner model

2 The work described in this section was developed as the master thesis by Lu [89]
under my supervision.

3 http://pegasus.tue.nl/mailman/listinfo/ah [31]
4 http://ifets.ieee.org/ [120]
5 http://www.noe-kaleidoscope.org/ [70]

http://pegasus.tue.nl/mailman/listinfo/ah
http://ifets.ieee.org/
http://www.noe-kaleidoscope.org/

190 6 Implementation and Integration

were interested in personalized course generation. Half of the Web-based e-
learning systems that use learner models offer a Web-service access to their
system. The results from the survey served to determine the interfaces of the
cgws.

6.3.1 Interfaces

6.3.1.1 Interfaces of the Course Generator Web-Service

The cgws provides two main kinds of interfaces: the core interface that pro-
vides the methods for the course generation, and the repository integration
interface that allows a client to register a repository at the cgws. The core
interface consists of the following methods:

• The method getTaskDefinitions is used to retrieve the pedagogical tasks
which the course generator can process. The tasks are represented in the
format described in Section 4.3.

• The method generateCourse starts the course generation on a given task.
The client can make information about the learner available in two ways:
if the learner model contains information about the specific learner, then
the client passes the respective learner identifier as a parameter. In case
no learner model exists, a client gives a list of property-value pairs that is
used by the cgws to construct a temporary “learner model”. The course
generator performs the planning in the same way as with a real learner
model, however its access of learner properties is diverted by the cgws

and answered using the map. Properties not contained in the map are
answered with a default value.

The result of the course generation is a structured sequence of educational
resources represented in an ims Manifest. Since the returned result does not
contain the resources but only references, the return result is not an ims cp.

The interface for repository registration consists of the following methods:

• The method getMetadataOntology informs the client about the metadata
structure used in cgws. It returns the ontology of instructional objects
described in Section 4.1.

• The method registerRepository registers the repository that the client
wants the course generator to use. The client has to provide the name and
the location (url) of the repository. Additional parameters include the
ontology that describes the metadata structure used in the repository and
the mapping of the oio onto the repository ontology.

• The method unregisterRepository unregisters the given repository.

6.3.1.2 Client Interfaces

A client that wants to use the cgws needs to provide information about the
educational resources as well as about the learner (if available).

6.3 Course Generation as a Web-Service 191

The interface ResourceQuery is used by the mediator to query the repos-
itory about properties of educational resources. The interface consists of the
following methods (the same as described in Section 4.2.5):

• queryClass returns the classes a given resource belongs to.
• queryRelation returns the set of identifiers of those educational resources

the given resource is related to via the given relation.
• queryProperty returns the set of property-value pairs the given resource

has.

The LearnerPropertyAPI makes the learners’ properties accessible to the
cgws in case the client contains a learner model and wants the course gen-
erator to use it. In the current version of the cgws, this interface is not yet
implemented. It would require a mediator architecture similar to the one used
for repository integration.

6.3.1.3 Interaction between Client and Server

In this section we describe the communication between client and server per-
formed when registering a repository and for course generation.

Fig. 6.19. A sequence diagram illustrating the repository registration

A repository is registered in the following way (for a sequence diagram
illustrating the registration, see Figure 6.19): in a first step, the client (LMS-
Client in the figure) retrieves the metadata ontology used in the cgws (i. e.,
the oio). The ontology is then used to generate a mapping between the oio

and the ontology representing the client metadata (Step 2) (the currently
existing mappings were manually authored). Then, the repository is registered
using the method registerRepository (Step 3). The repository is added to
the list of available repositories and made known to the mediator (Step 4).
Subsequently, the mediator fetches the ontology mapping from the client and
automatically generates a wrapper for querying the contentAPI of the client.

A client starts the course generation using the service method generate-
Course. In a first step, the cgws checks whether the task is valid. If so,

192 6 Implementation and Integration

the course is generated by the course generator. During the generation pro-
cess, Paigos sends queries to the mediator, which passes the queries to the
repository. Like in ActiveMath, the results are cached. After the course
is generated, the omgroup generated by Paigos is transformed into an ims

manifest and sent to the client.
The cgws is still in an early stage of development and further work is

necessary to realize a mediator-like architecture for the generic integration
of learner models. Yet, despite being a prototype, the cgws was successfully
used by the two third-party systems MathCoach (a learning tool for statis-
tics, [52]) and Teal (workflow embedded e-learning at the workplace, [156]).
The following chapter will provide additional details on these use-cases.

7

Evaluation

This section describes the evaluation and use cases that assessed different
aspects of Paigos. The first section covers technical evaluations and investi-
gates the claims made in the previous chapters, i. e., whether the oio can be
mapped to third-party metadata (Section 7.1.1); whether the mediator can
access third-party repositories (Section 7.1.2); and whether the Web-service
interface of Paigos is usable by third-parties (Section 7.1.3). Furthermore,
I describe the results of a detailed analysis of the performance of Paigos

(Section 7.1.4). The analysis shows that Paigos generates courses that take
a student approximately 11 hours to study in less than half a second, as long
as other components such as the learner model and the repositories are able
to answer requests in a timely manner. For real life usage results involving
the target audience, i. e., learners are equally important as technical results.
Therefore, Paigos was subject to formative and summative evaluations (Sec-
tion 7.2). The evaluation involved about fifty students from Germany, UK,
and Spain. The final summative evaluation illustrates that students like to
use Paigos and appreciate the interactive possibilities offered by Paigos.

7.1 Technical Evaluations and Use Cases

The use cases and evaluations reported in this chapter have been performed
in order to prepare the work and assess and improve the implemented results.
The use cases are summarized in Table 7.1. I will discuss them in the following
sections.

7.1.1 Evaluation of the Ontology

A major design goal of the oio was compatibility with existing knowledge
representations and metadata schemas. For that purpose, I analyzed to what
extent the ontology could be mapped to the following widely-used knowledge
representations and metadata used in existing e-learning systems.

C. Ullrich: Courseware Generation for Web-Based Learning, LNAI 5260, pp. 193–218, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

194 7 Evaluation

Table 7.1. Realized uses cases

Type of uses case Systems

Ontology mapping ActiveMath, DaMiT, DocBook, LeActiveMath

exercise repository, MathCoach, MathsThesaurus,
<ml>3, OMDoc, teal, Winds

Repository connection ActiveMath MBase, DaMiT, LeActiveMath ex-
ercise repository, MathCoach, MathsThesaurus,
teal

Usage of course genera-
tion service

LMS: MathCoach, teal, Educational services: As-
sembly Tool, Exercise Sequencer, Suggestion Compo-
nent

• DaMiT is an adaptive learning environment for the data mining do-
main [66]. It adapts to the individual learning style of a user by providing
different views (e.g. formal vs. informal) on the same learning content.

• DocBook [204] serves a standard for writing structured documents using
sgml or xml and was selected for the evaluation because of its wide-spread
use. Its elements describe the complete structure of a document down to
basic entities, e.g., the parameters of functions. Here, the most relevant el-
ements are those that describe content at paragraph level (called “block”
elements). DocBook is a general-purpose standard and not specifically de-
signed for the representation of educational resources.

• The LeActiveMath exercise repository was designed in the LeActive-

Math project and is a repository of interactive exercises that can be ac-
cessed by humans and machines. Its metadata is a slightly modified variant
of ActiveMath’s metadata.

• The MathCoach system was developed at the University of Applied Sci-
ences Saarland. It is a Web-based learning tool especially designed for
exercises and experiments in statistics [52].

• MathsThesaurus is an online multilingual mathematics thesaurus in
nine languages [182] and was selected because it covers a wide range of
mathematics.

• The “Multidimensional Learning Objects and Modular Lectures Markup
Language” <ML>3 [90] was designed for use in e-learning. Several Ger-
man universities used it to encode about 150 content modules in various
domains.

• The Teal project investigates task-oriented proactive delivery of educa-
tional resources in order to support learning at the workplace [156]. The
Teal project was particularly interesting since its domain was not math-
ematics but project management and the associated work tasks.

• WINDS [172], the “Web-based Intelligent Design and Tutoring System”
provides several adaptive hypermedia features, e. g., adaptive link anno-
tation. Its knowledge representation is based on Cisco’s categorization of

7.1 Technical Evaluations and Use Cases 195

learning objects [25] and was selected because its design was based on
pedagogical considerations. WINDS is discussed in detail in Section 8.4.

By and large, we were able to design mappings between the oio and the
knowledge representations. Most problems were caused by the fact that often
elements had no instructional semantics (e. g., para in DocBook, quotation
and description in <ml>3). In these cases, it is impossible to define a general
mapping rule.

In contrast, it was relatively straightforward to devise mappings between
the oio and knowledge representations devised for pedagogical usage as in
WINDS and <ML>3. For instance, <ML>3 represents learning materials in
“content blocks”. These blocks can have one of the following types: “defini-
tion”, “example”, “remark”, “quotation”, “algorithm”, “theorem”, “proof”,
“description”, “task”, or “tip”. Most elements directly correspond to an in-
structional object, however some elements, such as “quotation” and “descrip-
tion” cannot be mapped directly, since again the instructional purpose is
unclear.

Additional evaluations of the oio investigated its pedagogical appropriate-
ness. School teachers (for mathematics and physics), instructional designers,
and members of Klett’s e-learning lab (the largest publisher of educational
content in Germany), were interviewed about domain independence, peda-
gogical flexibility, completeness, and applicability. The feedback was largely
positive and suggestions (e. g., an additional class lawOfNature) were taken
into account for a revision of the ontology.

Applications of the ontology in domains other than course generation were
investigated in the European Network of Excellence Kaleidoscope and pub-
lished in [113]. Additionally, it was used for a revised version of the ALOCoM
ontology, a recent effort in the European Network of Excellence ProLearn [82],
in the e-learning platform e-aula [159], and in the CampusContent project of
the Distant University Hagen [87].

7.1.2 Mediator Use Cases and Evaluations

Several repositories were successfully connected to the mediator (second row
in Table 7.1, page 194): the mathematical knowledge-base of ActiveMath

(a Lucene database), the LeActiveMath exercise repository (an eXist-
database), the database of the math tutor MathCoach (DerbyDB/JDBC),
the MySQL-database of the online multilingual Mathematics Thesaurus, and
the DB2 database of the Teal project. As a result, all these repositories can
be accessed during course generation.

7.1.3 Course Generation Use Cases and Evaluations

The remote access to the course generation was successfully applied in Math-

Coach and the Teal project (third row of Table 7.1, page 194). While the two

196 7 Evaluation

Fig. 7.1. A course generated by Paigos for the Teal learning system

former use cases focus on teaching mathematics, the latter targets e-learning
in office environments. This illustrates that Paigos is applicable in other ar-
eas than mathematics. In both cases, Paigos was accessed as a Web-service
using the approach described in Section 6.3: MathCoach and Teal regis-
tered their repositories and then started the course generation by providing
a task. Information about the learner was passed as a map of property-value
pairs. Figure 7.1 contains a screenshot of a course generated by Paigos and
presented in Teal.

7.1.4 Performance of PAIGOS

If Paigos is to be used in real-life learning situations, it has to generate
courses quickly. In this section, I describe the results of a number of test of
Paigos that allow making claims about its performance, i. e., the time it takes
to generate courses under varying conditions.

In order to minimize influences of latency caused by the network, all com-
ponents, i. e., the testing framework, ActiveMath and its repository and
learner model ran on the same computer, a standard PC with 2.8GH Intel
Pentium 4 CPU with 2GB RAM (thus not a server).

Since the tests were designed to assess the performance of Paigos, influ-
ences of other components were minimized as much as possible. The learner
model was replaced by a dummy learner model that returned a standard value
for each query. In addition, most of the tests were performed with a pre-filled
mediator cache: the course was generated once, thereby causing the mediator
to store the results of the queries. Then, the actual test runs were performed,
on the same set of target fundamentals and thus resulting in the same queries.

7.1 Technical Evaluations and Use Cases 197

The tests were performed using the scenario “discover”. This scenario in-
volves a large variety of different educational resources and is not as specialized
as, say, “exam preparation”. The data was collected by generating six courses
on 1, 4, 8, 12, 16, and 20 target fundamentals. Each course generation was
repeated 10 times and the data was averaged. Prior to the test, the mediator
cache was filled as described above.

Table 7.2. The amount of fundamentals, pages and resources of the courses gener-
ated in the technical evaluations

Number of Fundamentals 1 4 8 12 16 20

Pages 6 19 36 52 79 83

Resources 37 105 202 254 319 365

Table 7.2 provides details on the length of the created courses. The course
generated for a single fundamental consists of six pages and a total of 37
educational resources if all dynamic tasks are expanded. A course generated
for 20 fundamentals consists of 83 pages and 365 resources. If each resource
has a typical learning time of about two minutes, completing this course would
take between 11 and 12 hours. These figures illustrate that course generation
requires a large amount of educational resources: a course for 4 fundamentals
consists of more than 100 educational resources.

Table 7.3. Required time of course generation vs. increasing amount of fundamen-
tals

Number of Fundamentals 1 4 8 12 16 20

Expanded 429 1 204 1 875 2 562 3 360 4 834

Dynamic Tasks 205 288 415 446 617 617

Table 7.3 and Figure 7.2 plot the number of fundamentals (called concepts
in the Figure) against the time required for course generation (in milliseconds).
In the table, the condition Expanded provides the time required for a com-
pletely expanded course, i. e., all dynamic tasks are directly instantiated. The
generation of the smallest course (a single fundamental, six pages and 37 ed-
ucational resources in total) takes less than half a second. The generation of
a course for 20 fundamentals takes less than five seconds, an acceptable delay
in a Web-based environment.

The condition Dynamic Tasks contains the values obtained for course
generation with dynamic tasks. The figures illustrate that not planning the
complete plan can result in a significant performance improvement: a course
for 20 fundamentals is generated in slightly more than half a second.

Table 7.4 compares the times it takes to generates courses using a filled
cache (the same data as in the previous tables) versus an empty cache. The

198 7 Evaluation

429

1204

1875

2562

3360

4834

205 288
415 446

617 622

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

#Concepts

M
ill

is
ec

o
n

d
s

Expanded Dynamic Tasks

Fig. 7.2. A plot of the number of fundamentals vs. time required for course gener-
ation in milliseconds

Table 7.4. Times for generating a course with filled and empty mediator caches.

Number of Fundamentals 1 4 8 12 16 20

Filled Cache 205 288 415 446 617 617

Empty Cache 1 218 2 176 4 258 6 502 8 975 11 405

Table 7.5. Numbers of queries to the mediator and of expanded queries

Number of Fundamentals 1 4 8 12 16 20

Mediator Queries (Exp.) 1 519 5 297 9 826 13 123 16 901 21 499

Expanded Queries (Exp.) 11 400 29 697 49 565 62 992 83 923 100 421

Mediator Queries (DT) 148 496 1 043 1 503 2 002 2 707

Expanded Queries (DT) 1 204 3 349 7 810 9 702 11 510 14 155

increase is significant: the generation of a course for a single fundamental with
an empty cache takes more than a second, compared to 200 milliseconds with
filled cached. A course for 20 fundamentals takes about 11 seconds compared
to half a second. This data was obtained with the repository running on the
same location as the course generator. Hence, accessing a repository over the
Web would increase the required time even more. The reasons for the increase
can be found by taking a closer look at the mediator.

Table 7.5 provides details about the number of queries that are sent to the
mediator during course generation and about the number of queries that the
mediator sends to the repository. The figures differ since the mediator expands
a query for a class c to include its subclasses. The data is provided for expanded

7.1 Technical Evaluations and Use Cases 199

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

#Concepts

M
ill

is
ec

o
n

d
s

Filled cache
Empty cache

Fig. 7.3. Plot of the number of fundamental vs. times required for course generation
with empty and filled cache

Table 7.6. Time required for course generation with different learner models (in
milliseconds)

no LM 288

SLM 463

LM-x 161 085

courses (condition Exp.) as well as for courses with dynamic tasks (condition
DT). The high amount of queries came as a surprise. Generating an expanded
course for a single fundamental results in about 1 500 mediator queries that
are expanded to more than 11 000 queries to the repository. The figures are
significantly less in condition DT. Approximately 150 queries are sent to the
mediator, which expands them to about 1 200 queries. On the other end of
the spectrum, generating an expanded course for 20 fundamentals results in
21 500 mediator queries and more than 100000 expanded queries. Condition
DT requires approximately 2 700 and 14 100 mediator and repository queries.

The above results show that Paigos generates courses very efficiently, how-
ever it strongly depends on the performance of the repository. An additional
test examined effects on the learner model on course generation. In the previ-
ous tests, learner property queries were handled by a dummy learner model.
Table 7.6 and Figure 7.4 compare the time required by course generation
with the dummy leaner model, the standard learner model of ActiveMath

(SLM) and an external learner model that was integrated in ActiveMath on
a provisional basis in the LeActiveMath project (I will refer to it as LM-x).

200 7 Evaluation

288 463 161085
0

100

200

300

400

500

600

700

800

900

1000

no LM SLM LM-x

Milliseconds

Fig. 7.4. Plot of the time required for course generation with different learner
models (in milliseconds)

During course generation, Paigos caches learner property queries. The cache
is cleared after each planning run. The course was generated for four funda-
mentals. Not surprisingly, the required time depends on the learner model:
if it provides fast response times, then course generation is not substantially
affected (see the increase from 288 to 463 milliseconds when using the SLM).
In contrast, a low-performing learner model like the LM-x deteriorates the
course generator’s performance: generating a course takes about 2:30 minutes
instead of half a second.

Table 7.7. Required average time of 50 concurrent course generation processes (in
milliseconds)

Dynamic Tasks 7 713

Expanded 31 029

A final test investigated the performance of concurrent access to the
course generator. In the test, fifty concurrent course generation processes were
started, for a course with four target fundamentals. Table 7.7 illustrates the
results: on average, a completely expanded course takes 30 second to generate.
Using dynamic tasks, it takes about 8 seconds.

7.2 Formative and Summative Evaluation 201

7.1.5 Discussion

The results show that Paigos on its own generates courses fast, especially
if dynamic tasks interrupt the expansion of subtasks. Thus, dynamic tasks
improve the performance and enable adaptivity in generated and authored
courses.

The tests were designed to assess the performance of Paigos. As a con-
sequence, external factors needed to be minimized. In particular, Paigos

retrieved all resource queries from the mediator’s cache. However, this test
design is not completely artificial: in classroom usage, each lesson covers a
limited set of fundamentals. After a few course generations, the majority of
queries will be cached. In addition, since the topics are known beforehand,
the teacher or the e-learning environment can fill the cache before the lesson.

Yet, Paigos’s real-life performance considerably depends on the reposito-
ries and the learner model. In case the components reside on different servers,
the network latency alone reduces the overall performance: the LeActive-

Math exercise repository is located in Eindhoven, the Netherlands. When
accessed from Saarbrücken, Germany, it answers a single query in about 80
milliseconds. As a consequence, the generation of a 4 concepts course that
requires 3 300 queries requires 4:30 minutes instead of 290 milliseconds.

On the Web, four minutes are an eternity. Few learners will wait patiently
for the course to appear: the experiments conducted by Bhatti et al. [14]
showed that subjects rate a response time of over 11 seconds as unacceptable.
This suggests adapting the user-interface metaphor of the course generator.
Instead of making the users expect an immediate course assembly, a course
should be “downloadable”, like a pdf document or PowerPoint slides. A down-
load often takes several minutes. After the “download” the user is notified and
can access her course from the main menu.

7.2 Formative and Summative Evaluation

This section presents the results of several evaluations of Paigos performed
in the LeActiveMath project. The reported work was done in collaboration
with Marianne Moormann (Mathematical Institute of Ludwig-Maximilians-
University, Munich), Tim Smith (School of Informatics at the University of
Edinburgh) and Eva Millán (University of Malaga). Paigos was subject to
two formative evaluations and a summative evaluation.

Formative Evaluation

Formative evaluations are performed during the development of a product
(a software, a lesson, etc.). The evaluators monitor how users interact with
the product and identify potential problems and improvements. According to
Scriven [165], p. 20, “[f]ormative evaluation is evaluation designed, done, and
intended to support the process of improvement, and normally commissioned
or done by, and delivered to, someone who can make improvements.”

202 7 Evaluation

Summative Evaluation

A summative evaluation is performed at the end of the development of the
product. It describes the outcome of the product, by summarizing whether
the product is able to do what it was supposed to do. Scriven [165], p. 20
characterizes summative evaluation as “the rest of evaluation: in terms of
intentions, it is evaluation done for, or by, any observers or decision makers
(by contrast with developers) who need evaluative conclusions for any reasons
besides development”.

The difference between formative and summative evaluation is illustrated
by Robert Stake’s analogy: “when the cook tastes the soup, that’s formative
evaluation; when the guest tastes it, that’s summative evaluation [165, p. 19].”

The evaluations focused on the scenario “discover”. It is the first scenario
learners will work with and does not require prior contact with the content
in contrast to, say, rehearse and connect. The final summative evaluation
included the remaining scenarios.

We conducted the first formative evaluation in December 2005 in Saar-
brücken and Munich, Germany (Section 7.2.1). At that time we had completed
a first prototypical implementation of the scenario “discover”. The results of
the evaluation were taken into account in the further implementation of Pai-

gos. In June 2006, the second formative evaluation took place in Munich and
repeated the methodology employed in the first evaluation (Section 7.2.1.2).
The result showed that we successfully addressed the problems identified in
the first evaluation. The summative evaluation was performed in January 2007
in Edinburgh, UK, and Malaga, Spain (Section 7.2.2). It investigated the com-
plete set of scenarios developed in LeActiveMath. The results were positive:
the subjects judged the generated courses being useful and well-structured.
The following sections describe the evaluations in detail.

7.2.1 Formative Evaluations

7.2.1.1 First Formative Evaluation (Germany)

A first formative evaluation assessed the scenario “discover”. It took place at
the universities in Munich and in Saarbrücken. The subjects were five students
for pre-service mathematics teachers in their final year of study (Munich)
and six computer science students attending a seminar on “e-learning and
mathematics” (Saarbrücken).

In both places the procedure was as follows: an introduction (15 minutes)
introduced the subjects to ActiveMath (the book metaphor, navigation,
online help and search, and exercises). Then, we randomly split the students
in two groups. One group worked with a generated course, the other with an
authored book that contained the complete content. The aim of the evaluation
was to assess whether an automatic selection of the educational resources
would show an advantage over accessing the complete content within a single
book. Usage of the search facility was not restricted.

7.2 Formative and Summative Evaluation 203

The subjects worked on the task to learn about derivatives, from the basic
concept up to the differentiation rules. The duration of the evaluation was
45 minutes. Afterwards, each subject completed a questionnaire that assessed
attitudes (e.g., like and dislike of the book they worked with) and how they
judge the effectiveness of the book. The questionnaire asked for both struc-
tured (Likert scale questions) and open feedback.

For the quantitative analysis, the answers were encoded numerically rang-
ing from 1 for complete agreement or positive judgment to 4 for complete dis-
agreement or a negative judgment. We merged all questions inquiring about
similar topics into one category, thus resulting in the following categories:
overall positive views on the system, quality of navigation, content quality,
and value for learners new to the content.

The subjects rated the overall ActiveMath system as average (2.54),
which is not surprising given the early state of the system. The subjects from
Saarbrücken gave better, i. e., lower, ratings (2.31) than the Munich subjects
(2.82). This was a general tendency throughout all the answers. We believe it
is caused by the Saarbrücken students being more familiar with software in
general. The subjects rated the content averagely, too (mean 2.37, Saarbrücken
and Munich 2.07).

Several question assessed whether the subjects judged the content as being
useful for learners without prior knowledge. The overall mean was 2.85, hence
neutral. Contrary to our expectations the group that worked with authored
books gave a more positive statement (2.66) than the group working with
generated books (3.01). However, the difference between the two locations
was more significant: the subjects of Saarbrücken rated the usefulness higher
than the Munich subjects (2.48 vs. 3.01).

The evaluation was severely hampered by the fact the mathematical skills
of the subjects were much lower than we expected. Both groups exhibited
problems while working with content we considered being prerequisites. Hence,
in the limited time of the study some subjects did not reach the principal
content of the books, which was the content that was adapted.

The qualitative feedback given in the open feedback questions provided
valuable suggestions that were taken into account for the development of
the course generation scenarios, e. g., about the order of the exercises and
examples, the insertion of prerequisites (axiom readyAux) and duplication of
resources). Although the evaluation focused on the scenario “discover”, these
modifications are relevant to all scenarios.

7.2.1.2 Second Formative Evaluation (Germany)

We conducted a second formative evaluation in June 2006 in Munich. Al-
though the number of participants was limited (4 pre-service teachers), the
feedback of the subjects showed that the modifications implemented as a re-
action to the first evaluation were beneficial.

204 7 Evaluation

The used methodology was almost equivalent to the one of the first study.
Due to the small number of participants, the subjects all worked with gener-
ated courses. In addition, the task was formulated slightly differently. In order
to avoid that the subjects try to work through all pages of the book and run
in danger to get stuck in the very first pages, they were told to assess the book
with respect to its adequateness for learners new to the concept of derivation.

In this evaluation, the subjects were very positive regarding the structure
of the generated courses. They rated the structure of the book as being ben-
eficial for “new learner” (mean 1.67). Similarly, the structure of the sections
are rated as being very coherent (mean 1.25).

7.2.1.3 Formative Evaluation (UK)

During February and March 2007 a lab-based University-level formative eval-
uation of Paigos was performed. At that time, the system was in an early
stage of development. The learner model and course generator was not yet
completely functional. Nevertheless, the evaluation was able to identify po-
tential problems and to identify the potential contributions of the course gen-
erator to the student’s learning and experience of ActiveMath.

A cooperative evaluation design was used for this study. This design ac-
tively engages the student in the evaluation process and enables them to step
back and critique the system’s performance and comment on their experience.
Students were set tasks to complete and asked to “think aloud” describing how
they are carrying out the task and any problems they are having. During their
interaction audio and video was recorded and later analyzed to identify met-
rics of performance. This data was then combined with the student’s answers
to pre- and post-use questionnaires.

Eleven students (6 male; mean age 19.45 years) from University of Edin-
burgh first year Mathematics courses took part in the evaluation. The par-
ticipants had been studying calculus for 2.6 years on average and rated their
own confidence with calculus as “good”. All participants were frequent com-
puter users who were very familiar with web interfaces. All had previously
used some form of math software although the tasks they had performed were
mostly limited to generating graphs and inputting mathematical formulae.
These participants were considered representative of the University-level tar-
get users of ActiveMath.

The content in the primitive version of ActiveMath evaluated was di-
vided into either authored courses which had been constructed by a teacher
or personal courses which the student could construct themselves using the
course generator. Due to the preliminary state of the learner model the con-
tent presented in these courses was not adapted to the competency levels of
the students. Essentially the student’s experience of the content was as an
electronic text book with hyperlinked concepts.

The evaluation showed that students found the structure and navigation
of the content “quite” easy to use and “quite” useful. Responses were made

7.2 Formative and Summative Evaluation 205

on a 5-point Likert scale ranging from 1 (“not at all”) to 5 (“very much”).
The two above values (“quite”) correspond to 4. 91% of students said that the
book metaphor used to structure the content was useful and intuitive and the
web interface worked as expected. However, 63% of the students commented
that the content structure became confusing when there were more than two
sublevels of content. When a course was subdivided into only one top level
and bottom level (chapters and pages), students navigated the content without
any problem. If a course contained further subdivision they were unable to use
the book metaphor to refer to the content and their efficiency of navigation
suffered.

Learners used a course generation wizard for selecting content topics to ap-
pear in the course. On average students rated the course generator as “quite”
easy to use but of only “moderate” usefulness. When asked for more details
63% of students commented that they found it difficult to relate the list of
content items presented in the course creation tool to the resulting form of
that content in the generated course. The relationship between content item
and page was not one-to-one as expected.

When asked to identify ActiveMath’s weaknesses students commented
that the system was not as good as a human tutor as it could not direct
them towards content and exercises based on their knowledge or give them
tailored guidance. However, no requests for these functions were made when
given the opportunity to suggest improvements. This mismatch possibly in-
dicates students’ assumptions about what a computer system is capable of.
This suggests that the functionality offered by the course generator in combi-
nation with the learner should be unexpected but beneficial to the student’s
experience of ActiveMath and their learning. This was confirmed in the
summative evaluation.

7.2.2 Summative Evaluation

The summative evaluation took place in January 2007 in Edinburgh, UK, and
Malaga, Spain. It involved 39 students of mathematics, engineering, science,
and computer science, with an age range of 17–21 (average age of 18). 28
students were male, 11 female.

The evaluation used a cooperative evaluation methodology. A cooperative
evaluation usually involves a user working together with a physically present
experimenter to use and critique a system [118]. The physical presence of the
experimenter allows them to modify the evaluation to the user, ensures that
they communicate any problems they are experiencing, any issues, incom-
patibilities they identify and also to ensure that they explore the important
features of the system. The upside of this approach is that a detailed insight
into the system’s usability and acceptance can be gained. The downside is
that only one user can be run at a time, the scenario in which the system
is used is highly artificial, and the experiences of multiple users cannot be
directly compared as the experimenter tailors each session.

206 7 Evaluation

These problems were addressed in the in-depth summative evaluation by
taking the cooperative evaluation design and automating it. As ActiveMath

is an on-line system tailored to a specific student a realistic evaluation of the
system should be performed by solitary students, on-line whilst in their usual
work environment, whether that is at home or in an open-access computer
lab. To achieve this, the experimenter in the cooperative evaluation has to
be replaced by a system that both guides the student and probes them for
feedback. On-line surveys were used to set the student tasks, provide hints on
how to solve the tasks, and ask for both structured (Yes/No or Likert scale
questions) and open feedback.

At the time of the study, course generation was new to the students and
not part of their learning routine. This certainly affects the judgment of some
of the scenarios, especially those that correspond to unfamiliar ways of struc-
turing content, e. g., the scenario “connect”. In addition, the subjects had no
experience how and when to use generated courses, e. g., to start with “dis-
cover”, followed by “rehearse”, etc. Nevertheless, the evaluation allowed to
collect data regarding the subject’s attitude towards generated courses, e. g.,
to assess whether the students accept and appreciate the generated books.

The evaluations were impaired by severe problems with the learner model
component. Access to the learner model was often very slow, which caused
some courses not to be generated. In addition, sometimes the competency
values were not updated and existing values forgotten. Nevertheless, since we
were able to take these problems into account, the evaluation provided us with
valuable data how learners value the courses generated by Paigos.

76

90

77

0

10

20

30

40

50

60

70

80

90

100

Assembling time acceptable Easy to create a course Confident finding content for the course

M
ea

n
 a

g
re

em
en

t
(5

-p
t

%
 s

ca
le

)

Fig. 7.5. General usability regarding the scenario “discover”

7.2 Formative and Summative Evaluation 207

Are the ... in the order you would expect?

36 36

3 3

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Chapters Pages

M
ea

n
 a

g
re

em
en

t
(2

 p
t

sc
al

e,
 a

g
re

e/
d

is
ag

re
e)

Fig. 7.6. Agreement with the order of elements

Figure 7.5 shows that the subjects appreciate Paigos’s general usability.
The subjects stated their agreement (100) or disagreement (0) using a 5-point
Likert scale. The assembling time is judged being acceptable (first column).
The subjects highly value the course generation wizard: they agree that it is
easy to create a course and that they are confident that they will find the
content they want (second and third column). Given that course generation
was previously unknown to the subjects, these results show that the revised
wizard is able to convey the concept of course generation to the learners.

The following figures present results concerning the scenario “discover”.
Figure 7.6 illustrates that Paigos orders chapters (first column) and pages
(second column) in a way the subjects expect. They could either agree or
disagree with the given statement. About 92% agreed that the chapters were
in the expected order.1 The subject’s agreement with the order of the pages is
similarly high (92%). These results show that automatic course generation as
implemented in Paigos structures courses in a way that students understand.

As shown in Figure 7.7, the subjects agree with the way Paigos adapts
courses to their knowledge if they agree with the learner model. Students were
asked to rate how well they think the content of the book has been tailored
to their current knowledge using a 5-point Likert scale (0 not tailored at all,
100 perfectly tailored). The course was generated for content the subjects had
worked with previously. The mean value of about 60 (first column) shows that

1 Due to a programming bug, the raw data results in a lower percentage (70%). If
the bug is taken into account and the data cleaned up, we reach 92% agreement.

208 7 Evaluation

61

29

38

54

73
77

0

10

20

30

40

50

60

70

80

90

100

Mean Learner model
correct: 0

Learner model
correct: 25

Learner model
correct: 50

Learner model
correct: 75

Learner model
correct: 100

M
ea

n
 a

g
re

em
en

t
(5

 p
t

%
 s

ca
le

)

Fig. 7.7. Results for the question “rate how well you think the content of the book
has been tailored to your current knowledge”, in relation to the perceived correctness
of the learner model

the subjects agree with Paigos’s adaptivity. However, a closer look on these
figures shows that the rating of the quality of the tailoring increases with the
perceived correctness of the learner model. One question in the evaluation
asked the subjects to rate how well they think the learner model reflects their
competency. Columns 2 to 6 in Figure 7.7 show that the rating of the tailoring
increases with the perceived quality of the learner model. With a very low
rating of the correctness of the learner model, the quality of the tailoring is
low, but not zero. This may be due to the tailoring with respect to the selected
fundamentals. A high perceived learner model quality (10 students for column
5, and 13 for column 6) increases the rating of the tailoring to almost 80. We
think that this data allows drawing two conclusions: firstly, the learners are
able to see that the courses generated by Paigos are adapted to the learner.
Otherwise, the ratings would not differ depending on the rating of the learner
model. Secondly, the realized adaptivity is appreciated by the learners.

Figure 7.8 presents the subjects’ agreement/disagreement with the level of
difficulty of the selected exercises (the numbers give the numbers of subjects
as well as the percentage). As described in the previous chapter, the scenario
“discover” presents exercises directly on a page, but also includes a link to
the exercise sequencer. Since the evaluation surveys instructed the subjects to
use the sequencer, the figures comprises the data for both selection processes
(which both use the same pedagogical task). The data contains the answers
of those students who stated that the estimations by the learner model were

7.2 Formative and Summative Evaluation 209

13; 72%

1; 6%

4; 22%

Agree
Disagree
No opinion

Fig. 7.8. Results for the question “do you think the level of difficulty of the exercises
was correct” for learners who state that the learner model values are correct

correct. Almost three quarter of the learners state that the selected exercises
have the appropriate difficulty level, and only a single subject disagrees. Again,
this result indicates that Paigos’s pedagogical knowledge is adequate.

Data that investigates the preferred way of exercise selection is presented
in Figure 7.9. The subjects were asked whether they preferred exercises being
presented using the sequencer or on a page. The results are not clear cut.
Even if more than half of the subjects prefer the sequencer, about a quarter
prefer the “traditional” way. Thus, the current formalization that caters for
both groups is reasonable.

Subjects like working with generated courses of the type “discover”. Fig-
ure 7.10 shows that only a single subject stated that he would never use a
generated course. One third would use it mostly or as often as authored books;
forty percent would use it occasionally.

An additional set of questions investigated the subjects’ attitudes towards
the remaining scenarios. For each scenario, the subjects first read its descrip-
tion and then answered the question how much they think they could learn
from a generated course of this type. Subsequently, they generated the cor-
responding course. After examining the course, the subjects answered the
following questions.2

• “I understand how the personal book is structured.”

2 The subjects use the terminology of ActiveMath: generated courses are called
personal books; authored courses are called prerecorded books.

210 7 Evaluation

0; 6; 15%

25; 5; 13%

50; 6; 15%

75; 13; 34%

100; 9; 23%

0
25
50
75
100

Fig. 7.9. Results for the question “do you prefer exercises to be sequenced in this
way or presented in a book that you can work through on your own?” Answers were
given on a 5-point scale, with 0 corresponding to “on a book page” and 100 to “in
the exercise sequencer”

• “The book is very tailored to my knowledge.”
• “I would learn a lot from using this type of personal book.”
• “How much do you think you would use a book this type when learning a

topic?”

The Figures 7.11 and 7.12 contain the results for scenario “connect”. The
first column in Figure 7.11 shows how much the learners think they could
learn a lot from a “connect” book (with 0 corresponding to “disagree” and
100 to “agree”). Even though the aim of the book, i. e., to make explicit the
connections between fundamentals, is usually not a focus in teaching and thus
unfamiliar to the learners, they still think they can learn from books of this
type after reading the scenario’s description. Albeit the structure of “con-
nect” books is more complicated than of the other scenarios, students seem
to understand it (second column). They have a neutral opinion regarding the
adaptivity. Interestingly, the subjects appreciate the scenario less after having
seen a generated course (column 4) than after having read the description
(column 1). We think this indicates that the students value learning about
connections between fundamentals, but that the formalization of the course
needs to be refined. This conclusion is supported by the data in Figure 7.12.
More than half of the subjects state that they would use a book of type
“connect” occasionally and more often, and an additional 20% would use it
at least once. In this and the following figures, the total number of subjects

7.2 Formative and Summative Evaluation 211

Never; 1; 3%

Once; 7; 18%

Occassionally; 16; 42%

As often as prerec.; 10;
26%

Mostly; 4; 11%

Never Once Occassionally As often as prerec. Mostly

Fig. 7.10. Results for the question “how much do you think you would use a
Discover book when learning a new topic?”

differ since due to the problems with the learner model some subjects were

49

65

48

43

0

10

20

30

40

50

60

70

80

90

100

Learn (description) Understand structure Tailored Learn (course)

M
ea

n
 a

g
re

em
en

t
(5

-p
t

%
 s

ca
le

)

Fig. 7.11. Results for the scenario “connect”, on a 5-point scale, with 0 correspond-
ing to complete disagreement and 100 corresponding to complete agreement

212 7 Evaluation

Never; 8; 22%

Once; 7; 19%

Occassionally; 15; 40%

As often as prerec.; 5;
14%

Mostly; 2; 5%

Never Once Occassionally As often as prerec. Mostly

Fig. 7.12. Results for the question “How much do you think you would use a book
of type ‘connect’ when learning a topic?”

unable to generate courses for all scenarios. These subjects were not included
in the respective data.

Figure 7.13 and 7.14 contains the results for the scenario “exam simula-
tion”. In Figure 7.13, the discrepancy between the agreement after reading the
description (85) and after inspecting the course (54) is striking. We attribute
this fact to the long time it takes to generate this particular type of book. In
this scenario, all exercises have to be determined during the course generation
in order to fill the selected time-span and hence, dynamic tasks cannot be
used. But still, 90% of the subjects would use books of this type.

The data in Figure 7.15 shows that the subjects highly value generated
courses of the type “rehearse”: the average agreement after reading the de-
scription and after generating a course is about 75. The high rating is con-
firmed by Figure 7.16. None of the subjects claimed he/she would never use a
book of this type, about two third would use mostly or as often as authored
books. We attribute these results to the fact that rehearsing is a common
task when learning and that students appreciate support during rehearsal,
especially if the support is tailored to their competencies.

Figure 7.17 contains the data for books of the type “train competency”.
The appreciation is lowest of all scenarios (56) but increases after the subjects
have inspected a generated course (61). We think these results are due to
the unfamiliarity of the concept of “competencies”. This would explain the
increase: by only reading the description, the learners do not have a sufficiently
concrete idea of the scenario. After inspecting a generated course, the subjects

7.2 Formative and Summative Evaluation 213

85
82

59 58

0

10

20

30

40

50

60

70

80

90

100

Learn (description) Understand structure Tailored Learn (course)

M
ea

n
 a

g
re

em
en

t
(5

-p
t

%
 s

ca
le

)

Fig. 7.13. Results for the scenario “exam simulation”, on a 5-point scale, with 0
corresponding to complete disagreement and 100 corresponding to complete agree-
ment

become aware that it mainly consists of exercises that train a specific aspect
of a fundamental. Two third of the students would use such a course at least
occasionally (Figure 7.18).

The most appreciated type of book is “train intensively” (called “work-
book” in ActiveMath). The mean agreement both before and after a course
of this type was generated is about 80 (see Figure 7.19). About 85% of the
subjects would use it at least occasionally (see Figure 7.20), and half of the
subject as least as often as an authored book.

7.2.3 Discussion

The results of the formative and summative evaluations show that the subjects
understand the structure of the generated courses and appreciate the tailoring
to their competencies. Those scenarios that support the students in working
with exercises are valued highest. The in-depth evaluations performed in the
LeActiveMath project confirm that students primarily appreciate Active-

Math as a tool for rehearsing and training. Scenarios such as connect that
are new to students are rated lower.

The open feedback questions provide other valuable insights. Two sub-
jects commented that they were afraid to miss important content when using
generated courses. One of the subject said “the personal book was at a good
level, but if I was revising for maths I would be worried that it would miss

214 7 Evaluation

Never; 3; 9%

Once; 10; 31%

Occassionally; 10; 30%

As often as prerec.; 6;
18%

Mostly; 4; 12%

Never Once Occassionally As often as prerec. Mostly

Fig. 7.14. Results for the question “How much do you think you would use a book
of type ‘exam simulation’ when learning a topic?”

77

84

71
74

0

10

20

30

40

50

60

70

80

90

100

Learn (description) Understand structure Tailored Learn (course)

M
ea

n
 a

g
re

em
en

t
(5

-p
t

%
 s

ca
le

)

Fig. 7.15. Results for the scenario “rehearse”, on a 5-point scale, with 0 corre-
sponding to complete disagreement and 100 corresponding to complete agreement

7.2 Formative and Summative Evaluation 215

Once; 4; 13%

Occassionally; 8; 25%

As often as prerec.; 14;
43%

Mostly; 6; 19%

Once Occassionally As often as prerec. Mostly

Fig. 7.16. Results for the question “How much do you think you would use a book
of type ‘rehearse’ when learning a topic?”

56

73

63
61

0

10

20

30

40

50

60

70

80

90

100

Learn (description) Understand structure Tailored Learn (course)

M
ea

n
 a

g
re

em
en

t
(5

-p
t

%
 s

ca
le

)

Fig. 7.17. Results for the scenario “train competency”, on a 5-point scale, with 0
corresponding to complete disagreement and 100 corresponding to complete agree-
ment

216 7 Evaluation

Never; 1; 3%

Once; 10; 31%

Occassionally; 11; 34%

As often as prerec.; 6;
19%

Mostly; 4; 13%

Never Once Occassionally As often as prerec. Mostly

Fig. 7.18. Results for the question “How much do you think you would use a book
of type ‘train competency’ when learning a topic?”

76

84

71

78

0

10

20

30

40

50

60

70

80

90

100

Learn (description) Understand structure Tailored Learn (course)

M
ea

n
 a

g
re

em
en

t
(5

-p
t

%
 s

ca
le

)

Fig. 7.19. Results for the scenario “train intensively”, on a 5-point scale, with 0
corresponding to complete disagreement and 100 corresponding to complete agree-
ment

7.2 Formative and Summative Evaluation 217

Never; 2; 6%

Once; 3; 9%

Occassionally; 11; 30%

As often as prerec.; 9;
26%

Mostly; 10; 29%

Never Once Occassionally As often as prerec. Mostly

Fig. 7.20. Results for the question “How much do you think you would use a book
of type ‘train intensively’ when learning a topic?”

out something important, and just read the prerecorded books anyway”. This
underlines the importance of making the concept of generated courses familiar
to the students if they are to be used in daily learning.

Another point emphasized by the subjects in the open feedback was that
they understand and appreciate the notion that a generated course is indeed
personal, that is, it is tailored to and modifiable by the individual learner. In
fact, all subjects agreed that they should be able to modify generated courses
using the item menu.

I conclude this chapter by discussing some of the subjects’ remarks
(spelling errors were not corrected). These comments are of general interest
since they show that students will criticize pedagogically questionable course
generation knowledge, but at the same time appreciate the flexibility that
course generation makes possible. Appendix A contains the complete list of
the students’ comments.

The two following quotes illustrate that the subjects detected incorrect
order of chapters, but were also aware of the intended structure in case of
correct order.

difference quotient is first but i think it should come later. pages are
in a logical order.
They get progressively more difficult and the later ones require the
knowledge of the first ones

218 7 Evaluation

Three quarter of the subjects judged the difficulty level of the exercises
as appropriate considering their competency level; several provided comments
like the first quote below. The remaining subjects either judged the exercises
either being too difficulty or too easy (see the second quote). Often, this was
caused by the problems with the learner model.

the exercises are good as they grow in difficulty”
These problems seemed quite hard considering how weakly I have met
the prerequisites.

The subjects appreciate the options of modifying generated courses by
adding and removing resources. and the majority agrees that authored books
should remain fixed (“kind of a backup”). Particularly interesting are the last
two comments: the “freedom” of ActiveMath helps learners to find they
own way of learning and makes them feel being respected, treated as adults.

One is responsible utterly for a personal book, but should always have
a kind of backup in the form of pre-recorded book.
I think the more freedom a user is given, the more likely they will find
the best way to learn the material for them.
As I understand, LAM is designed for students; as students are adults,
they should be able to easily decide about contents of their books, to
suit their particular needs.

The final four comments are a representative set of quotes of the subjects
describing whether they prefer working with authored books or generated
courses. Most subjects value the clear structure of personal books and that
they are focused on the selected target fundamentals. These quotes show that
subjects perceive the adapted courses that Paigos generates as an added
value compared to traditional access to content.

In Personal Book topics are more friendly segregated.
personal book offers a better means of understanding the product rule
as it gives information bit by bit ie in sequence
The prerecorded books were set out ideally and in an acceptable order,
I’d use that.
I prefer personal book because it is only about the product rule and
no other topics would interrupt me. The pre-recorded book is quite big
and is therefore not as clear as the personal book.

Part III

Conclusions

8

Related Work

Course generation has long been a research topic and appears in the literature
under a number of names, for instance curriculum sequencing [175] and trail
generation [79]. The subsequent sections provide an overview of existing course
generation approaches. The focus lies on well-known approaches that use (or
claim to use) educational knowledge to inform the sequencing and selection
of learning objects.

8.1 Early Work

The early work (e. g., [143]) introduced techniques upon which some of today’s
course generation is still based, in particular those approaches that model
pedagogical knowledge. In the beginning, the distinction between course gen-
eration and ITS was fuzzy. The goal was to model the complete process of
one-to-one tutoring as a dialogue between a system and a learner, including
interactions while solving exercises. Some of these systems (e. g., [121]) used
learning materials retrieved from repositories to support the tutoring process
— a technique that later became the basic technique for course generation.

The early approaches applied a number of AI-techniques to guide the tuto-
rial interaction, e. g., skeletal plans retrieved from a plan library [213], expert
systems [26], STRIPS-based planning [143], blackboard-based architectures
[121], and task-based approaches [196]. For a recent discussion on modeling
tutorial interactions, see [37].

The early work was done at a time when the Internet was in its very in-
fancy: there was no notion of standardized learning objects, and Web-based
learning environments did not exist. With the advent of the Web, the research
focus in course generation moved from modeling tutorial interactions to ex-
ploring Web-based techniques such Adaptive Hypermedia, generic descrip-
tions of learning objects (metadata), and re-use as well as interoperability of
resources and tools. While pedagogical knowledge was present in each devel-

C. Ullrich: Courseware Generation for Web-Based Learning, LNAI 5260, pp. 221–230, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

222 8 Related Work

oped system to some extent, often it was marginalized and seldom extensively
and explicitly modeled.

Since the modeling of pedagogical knowledge plays a significant role in
this volume, I restrict the following discussion of related work to approaches
which have a similar objective.

8.2 Generic Tutoring Environment

The “Generic Tutoring Environment” (GTE) [195, 197] is a learning environ-
ment that is based on the explicit modeling of knowledge. It was developed in
the Third EU Framework Programme, in the scope of several Delta projects.
To my knowledge, despite the time that has passed since the development of
GTE, no other course generation system possesses a comparable large instruc-
tional knowledge base up to now, aside from Paigos.

GTE was the first system that followed the line of thought of Steels’ Com-
ponents of Expertise [174]. Based on this paradigm, the instructional knowl-
edge represented in GTE was divided into instructional tasks, instructional
methods, and instructional objects. Tasks represent activities to be accom-
plished during the teaching process. They are performed by methods that
decompose tasks into subtasks down to a level of primitives. The tree that
results from the repeated decomposition of tasks into subtasks by methods is
called a task structure. Paigos is also based on the task-based paradigm.

The early descriptions of GTE [196] show that the original system was not
designed as a course generator. The complete instructional process was sup-
posed to be modeled as a dialogue, which includes interactions while solving
exercises. This aim is reflected in the process model of GTE, which han-
dles the interaction with the learner. The process model includes the selec-
tion/presentation of the educational resources and interpretation of learner
input during problem solving.

GTE does not use any standard (AI) technique but implements its own al-
gorithm, based on proceed signals. A proceed signal tells the system to advance
the interaction step by step. It is sent to the top-level task of the interaction
and pushed through the tasks and methods of the task structure down to the
currently active bottom task. In case the bottom task can be decomposed,
a method that is applicable on the task is selected using a complex set of
rating conditions. If the interactions associated with task were completed suc-
cessfully (e. g., the learner solved the associated exercise(s)), then the task
is marked as “finished”. Otherwise a failure signal was sent to the method
that created the task. A method that receives a process signal passes it to its
first unfinished task. A failure signal causes the method to select a different
subtask or to fail.

Van Marcke [197] argues that process signals provide a great deal of flexibil-
ity, as it enables tasks to interrupt the execution of its children. The downside
is that no analysis of this algorithm exists (at least not published) and thus

8.3 Dynamic Courseware Generator 223

its complexity is unknown. In contrast, the formal underpinnings of HTN
planning were developed in the mid-90s by [40] and complexity results are
available.

Despite the amount of pedagogical knowledge modeled in GTE, it has no
notion of scenarios as developed in Paigos. While the methods for teaching
a concept do represent different ways of doing so (e. g., following a tutorial or
discovery approach), the selection of the method is done using ratings encoded
within the methods. A learner can not tell the system to apply, say, a discovery
approach for the complete tutorial session.

In addition, the selection of exercises is limited. GTE takes difficulty and
prior performance into account but does not use properties such as compe-
tencies, although it is in principle possible within the GTE framework.

8.3 Dynamic Courseware Generator

Just like GTE, the “Dynamic Courseware Generator” (DCG) [198, 199, 200] is
one of the early systems. It uses rules for pedagogically-based decision making,
e. g., for deciding how to present a concept. DCG is based on the ideas of [143]
who first proposed to use AI planning for technology-supported learning.

DCG distinguishes between the domain concepts and the educational re-
sources used to explain/teach the concepts. The domain structure is repre-
sented in a graph. Nodes correspond to domain concepts, and edges to rela-
tions that hold between the concepts, e. g., domain prerequisites. The educa-
tional resources are stored as html pages and they are linked to the domain
concepts. Each resource has a role (e. g., teach, explain, exercise, and test).

Course generation in DCG is separated in two consecutive steps: the se-
lection of the concepts the course will cover and the way how these concepts
are explained. Based on [205], Vassileva named these steps content planning
and presentation planning.

Given a learner and a goal concept, content planning generates paths
through the concept graph that connect the concepts known by the learner
with her learning goal. DCG uses an AI-planner to search for the paths. A
plan is then selected as a course skeleton for presentation planning.

Presentation planning selects which of those educational resources that are
linked to a concept are to be presented to the learner and in what order. DCG
uses four different methods for teaching a concept: “hierarchical”, “advanced
organizer”, “basic concept”, and “discovery”. The hierarchical method uses
the sequence “introduce”, “explain”, “give example”, “give exercises”, and
“give a test”. The “advance organizer” method uses the same sequence, but
starts by informing the learner of the structure of the course to come and of
the learning objectives. The “basic concepts” method starts with an exercise.
The “discovery” method presents a motivating problem and an analysis of the
problem and then lets the learner solve the problem on her own.

224 8 Related Work

DCG is a course sequencer, that is, the next page is selected dynamically
at the time the learner requests it. While this allows better reactivity, the
learner is not able to see the structure of the complete course, which inhibits,
for instance, free navigation.

The distinction between content and presentation planning raises the prob-
lem that for each concept it is decided separately what educational resources
will be selected for it. The selection only takes the current concept into ac-
count. Using the published rules, it is not possible to construct a page that
contains, say, the definition of a concept and all the definitions of its prereq-
uisite concepts. Aside from the case of re-planning, it is also not possible that
the same concept occurs in the course several times, which is necessary, for
instance, when a theorem is used in several proofs and should be presented
each time.

8.4 ACE/WINDS

The “Adaptive Courseware Environment” (ACE)[171] offers similar features
as DCG. ACE was an extension of one of the first Web-based e-learning sys-
tems ELM-ART [20, 207], and combined ELM-ART’s adaptive hypermedia
techniques with DCG’s presentation planning.

In ACE’s concept graph, each node represents a concept or a set of con-
cepts. Each concept is linked to different types of learning materials that
explain different aspects of the concept. The edges of the domain structure
represent prerequisite relations. In addition, authors can specify a sequence
relation that is used as the default path through the domain.

Whereas in DCG the rules that govern presentation planning are inde-
pendent of the concepts and hence re-used, in ACE an author has to provide
them explicitly by specifying the sequence of educational resource to present
for each concept (otherwise a default strategy is used). The sequence can
change depending on values of the learner model, for instance easy examples
might be skipped. Unfortunately, Specht and Oppermann do not describe the
expressiveness of these rules, which makes them hard to assess. An adaptive
sequencing component tries to keep the student on an optimal path but allows
skipping sections if the learner proves to master them in a test.

Specht continued research in course generation and developed the “Web-
based Intelligent Design and Tutoring System” (WINDS) [172]. Based on
WINDS’ description, ACE and WINDS seem closely related, which, however,
is hard to assess precisely as the available descriptions of WINDS are very
abstract. WINDS may possess more complex adaption methods, such as one
deciding whether to present a concrete example before or after an abstract
statement.

Both ACE and WINDS are conceptually very similar to DCG. In partic-
ular, they follow the distinction between content and presentation planning
and hence suffer from the same drawbacks.

8.5 Former Course Generator of ActiveMath 225

Another drawback is that the rules informing the presentation planning are
attached to the individual concepts, which is a step backwards from the goal
of generic instructional knowledge. The same applies to the requirement that
the path through the domain structure needs to be specified by the author
and is not generated automatically taking into account the learning goals.

8.5 Former Course Generator of ActiveMath

The former course generator of the learning environment ActiveMath (see
Section 2.4.2) generates a personalized course in a three-stage process, where
stage one and two correspond to content and presentation planning [88]:

Retrieval of content. Starting from the goal concepts chosen by the user, all
concepts they depend upon and corresponding additional educational re-
sources (e.g., elaborations, examples for a concept) are collected recur-
sively from the knowledge base. This process uses the dependency meta-
data information specified in metadata. The result of this retrieval is a
collection of all educational resources that are available for the goal con-
cepts and their prerequisites.

Applying pedagogical knowledge. In step second step, the collection of edu-
cational resources is processed according to the information in the user
model and in the pedagogical module. This results in a personalized in-
structional graph of the learning material. This process is detailed below.

Linearization. In the final step, the instructional graph is linearized.

The result of the presentation planning is a linearized instructional graph
of references to educational resources.

The goal of the application of pedagogical knowledge is to select resources
from the collection of educational resources that was gathered in the first
stage of course generation and to assemble them into a course. ActiveMath

employs pedagogical information represented in pedagogical rules. It evaluates
the rules with the expert system shell jess [43]. The rules consist of a condition
and an action part. The condition part of a rule specifies the conditions that
have to be fulfilled for the rule to be applied, the action part specifies the
actions to be taken when the rule is applied.

The course generator employs the pedagogical rules to decide: (1) which
information should be presented on a page; (2) in what order this information
should appear on a single page; (3) how many exercises and examples should
be presented and how difficult they should be; (4) whether or not to include
exercises and examples that make use of a particular learning-supporting ser-
vice, such as Computer Algebra Systems.

The former course generator of ActiveMath offered the following sce-
narios: overview, guided tour, workbook, exam preparation. A prototypical
Polya-style proof presentation targets the presentation of proofs in a manner
based on guidelines by [146]. For more details on the scenarios, see [188, 105].

226 8 Related Work

The former course generation of ActiveMath had the following limita-
tions. First, the content on a page was limited. Only a single concept could be
contained in a page, and all other educational resources on that page had to
be for the concept — a recurrent limitation of course generators that follow
the paradigm of distinguishing between content and presentation planning.

A severe technical problem arouse due to the usage of the expert sys-
tem approach. There, it is required that first the fact base that is used as
a basis for the reasoning process is filled with the facts that are relevant for
the reasoning. Only then, the reasoning process starts. This required to col-
lect all potentially useful educational resources beforehand and then perform
the selection. Naturally, this created performance problem, in particular high
memory usage.

Additional limitations included the following. The rules that decided which
auxiliaries to select for a concept were limited; they consisted of fixed schemas.
In addition, the reasoning process happened on OMDoc level, using the meta-
data it provided, therefore, other repositories could not be integrated. Finally,
the resulting course only contained educational resources; no learning goals,
text templates, or services.

8.6 APeLS/iClass

In the “Adaptive Personalised e-Learning Service” (APeLS) [27, 28] an au-
thor can represent his courses using what the authors call “narratives” and
“candidate groups”. A narrative is a sequence through the content where each
step consists of sets of educational resources that share the same learning goal
(candidate groups). The specific resource presented to the learner is selected
at run-time. This approach seems very similar to Vassileva’s paths through
the domain structure but instead of having concepts linked with educational
resources, the nodes of the domain structure consist of the sets of educational
resources. Unfortunately, the authors do not provide any details on this topic
(nor citations). Different from DCG, where the paths were generated during
content planning, in APeLS they are authored.

In APeLS, presentation planning is restricted to selecting the specific can-
didate group. The candidate groups are pre-defined and differ in the struc-
ture/layout in which the educational resources are placed and their output
format.

Conlan and Wade continued their research on course generation in the
European FP6 Integrated Project “iClass” (Intelligent Distributed Cognitive-
based Open Learning System for Schools)1 that “adapts to learners’ needs,
both intelligently and cognitively” [78]. In iClass, two components are respon-
sible for course generation (or, to follow the terms of Keeffe et al. 78, “the

1 http://www.iclass.info [60].

http://www.iclass.info

8.7 SeLeNe 227

delivery of customized learning experiences”). A “Selector Service” does con-
tent planning and part of the presentation planning and a “LO Generator”
performs additional functionalities similar to presentation planning.

The authors stress that the fact that unlike in APeLS, the iClass system
separates pedagogical information and the domain structure into two distinct
entities. However, they do not provide information to what extent this is dif-
ferent from the approach as advocated by [143] and implemented by, e. g.,
Vassileva in DCG. A potential difference might be that the selector’s domain
structure contains “skills” as well as concepts, and the selector service uses
“skills” as a basis for determining the content. However, as there exists a
one-to-one relationship between skills and concept, the approach is not fun-
damentally different. Once the selector has determined a set of concepts, it
decides how each concept is presented, i. e., it selects the suited instructional
method. The LO Generator then determines the exact educational resources
to be used, based in learner preferences and context.

8.7 SeLeNe

The “SeLeNe” (self e-learning networks) project investigated technology-
supported learning in networks of Web-based learning objects.2 SeLeNe was
an Accompanying Measure in the Fifth Framework Programme of the EU;
part of its research was continued in the TRAILS-project of the European
Network of Excellence Kaleidoscope.3 A techniques investigated in SeLeNe is
adaptive sequencing. Keenoy et al. [79, 80] call a linear sequence of educational
resources a trail.

In SeLeNe, a learner searches for educational resources using simple
keyword-based queries that are matched against author and subject infor-
mation. A “Trails and Adaptation service” personalizes the queries by refor-
mulating and adding conditions to the query (e. g., the learner’s language),
and by ranking the results in order of relevance to the learner. The learner can
request a personalized sequence of interactions through the resources (a trail).
Trails are calculated based on relationship types that hold between resources.

Most of the pedagogical knowledge used in SeLeNe is embedded in the
algorithm that ranks the search results. The sequencing of the educational re-
sources is done using the relationships given in the metadata of the resources.
In the current version, it is rather limited, since essentially it consists of pre-
senting all prerequisite concepts. When searching for resources, the learner
can only specify a learning goal from the content. She can not specify more
sophisticated learning goals as they are available in Paigos.

2 http://www.dcs.bbk.ac.uk/selene/ [191].
3 http://www.noe-kaleidoscope.org/ [70].

http://www.dcs.bbk.ac.uk/selene/
http://www.noe-kaleidoscope.org/

228 8 Related Work

8.8 Statistical Methods for Course Generation

In contrast to the above approaches to course generation that rely on a more or
less detailed explicit representation of instructional knowledge, Karampiperis
and Sampson [71, 72] suggest to use statistical methods for determining the
best path through the educational resources.

The approach works as follows. Instead of first selecting the concepts and
then for each concept selecting the educational resources, they first calculate
all possible courses that reach a set of concepts and then select the best suited
one, according to a utility function.

Generating all possible sequences requires merging the concepts contained
in the domain structure with the educational resources. This is achieved by re-
placing every concept in the domain structure by the related set of resources.
The resulting structure (“Learning Paths Graph”) inherits the relations rep-
resented in both the domain structure and among the resources.

The utility function encodes how good a particular educational resource is
suited for a given learner. The utility function maps learning object charac-
teristics to learner characteristics and vice versa. The function is determined
through statistical methods: for a set of reference learners, an instructional
designer rates a training and generalization set of educational resources with
respect to their usefulness for the learner. Subsequently this data is used to
train and evaluate the resulting utility function.

In a final step, the edges in the learning paths graph are inversely weighted
with to the utility function: the more appropriate an educational resource is,
the lower the weight. Determining the best sequence through the learning
paths graph is done by using a shortest path algorithm

The authors evaluated their approach by comparing automatically calcu-
lated sequences with sequences authored by an instructional designer, as well
as through simulations that measure how close the generated sequences are
to ideal paths. They claim that their approach can produce sequences that
are almost similar to the ideal ones (generated and authored) if the educa-
tional resources are well described by metadata and consist of collections of
small-size resources.

This statistical method is a novel approach to course generation and hence
it is hard to assess it suitability in real-life applications. A major drawback
is that the educational resources are rated by an instructional designer with
respect to a specific learner. The rating does not take into account that the
same learner can have different learning goals regarding the same concepts.
Another drawback is that educational resources will only appear in a course
if there exists a direct relation between them. However, it will often be the
case that two educational resources for the same concept have no relationship
to each other, e. g., two exercises of different difficulty level. They will never
be presented in the same course, unless a different educational resource exists
that aggregates both resources. This criticism is supported by the evaluation,
where best results were obtained for small-size resources.

8.9 Approaches Using Hierarchical Task Network Planning 229

8.9 Approaches Using Hierarchical Task Network
Planning

Course generation approaches based on HTN planning are rare – in the litera-
ture, only a single system is described, apart from Paigos. Méndez et al. [111]
propose to use HTN planning for course generation in the e-learning environ-
ment Forhum. Their approach automatically generates HTN methods and
operators from the domain model. So called “educational objectives”, which
practically correspond to concepts are “achieved” by educational resources,
called “educational units”. Each educational unit has an associated learning
style.

The generation of the methods and operators happens according to a set of
five rules: for each concept c, a method m is generated. The preconditions of m
are the prerequisites of c. The subtasks of m are the concepts that are linked to
c by a part-of relation (called “component”). For each educational resource
e, a method and an operator are generated. The method has as a precondition
the learning style associated with e (hence, the resource will only be “applied”
if the learning style is the one of the learner); the single subtask consists of
the resource itself. The operator has as precondition the prerequisites of e, the
delete list is empty, and the add list consists of the concept associated with e.
Therefore, a resource is presented after its prerequisites were presented. The
remaining three generation rules are similar.

In contrast to Paigos, the generation of the pedagogical knowledge hap-
pens automatically, once the domain structure is defined. The system can
then generate courses for given concepts adapted to a given learning style.
The drawback is that the pedagogical knowledge is encoded in the genera-
tion process and it is rather limited. Basically, it says: teach the prerequisites
first and select educational resources according to the learner’s learning style.
Paigos, in contrast, has an explicit representation of pedagogical knowledge,
which was derived by interviewing from pedagogical experts and from ped-
agogical theory. In addition, Paigos allows generating courses for the same
concepts but with different learning goals, which is not possible in the planner
of Forhum.

Sicilia et al. [167] present the idea to use HTN planning to generate IMS
LD instances. Their description is on a very abstract level and sketches some
basic operators and methods. By using two HTN methods as an example, they
hint at how different pedagogical approaches (“content-oriented” vs. “socio-
cultural”) might be implemented. Their work provides evidence that course
generation techniques can be used for the generation of learning designs, how-
ever they do not provide any detailed formalization as done within the context
of this volume.

230 8 Related Work

8.10 Ontologies for Instructional Design

Closely related are applications of ontological modeling in instructional design.
Seminal work in this direction by Mizoguchi and Bourdeau [117] describes
general directions of research regarding how ontologies might help to overcome
some problems of the area of artificial intelligence techniques in education.
Building on that work, Aroyo and Mizoguchi [8] describe how an assistant
layer uses an ontology to support the complete authoring, for instance by
providing hints on the course structure.

Recent work by [56, 55] develops “an ontology of learning, instruction
and instructional design”. Conceptually similar to Paigos’s pedagogical tasks
and methods, this ontology formalizes the learning process by describing how
high-level events (called “educational events”) can be decomposed into smaller
events. The approach makes assumptions about the changes in the state of
minds of learners: An educational event combines an instructional action with
a presupposed mental change. For instance, the instructional action “prepar-
ing the learner for learning” is associated with the state change “being ready
to learn”. There is no notion of preconditions, i. e., one cannot specify the con-
text under which a specific decomposition is applicable. The ontology is used
for author support and provides guidelines what learning materials to author
in a given learning theory. Currently supported learning theories encompass
cognitive as well as constructivist theories.

The authors do not list the automatic generation of courses as a poten-
tial application for the ontology, and accordingly, the ontology misses some
requirements necessary for this task. First, the event decomposition does not
contain preconditions and the selection of an event depends only on the in-
structional theory used in the current authoring process. Additionally, the
connection to the resource layer is missing: basic events are not coupled with
partial descriptions of educational resources that can be used to locate re-
sources that support the achievement of the educational event. Furthermore,
different scenarios are not represented. Nevertheless, it would be an interest-
ing research direction to combine their complex ontology with the approach
provided by Paigos.

9

Future Work and Acknowledgments

9.1 Future Work

The declarative representation of the course generation knowledge and the
modular architecture of Paigos ensures that extensions can be realized easily.
The following work could be worth investigating.

Increased Generality. The course generation knowledge and the ontology of
instructional objects were designed for applicability in domains other than
mathematics. However, the majority of the test cases and evaluations of
Paigos used mathematics as a domain. Due to its formal nature, mathe-
matical knowledge is well structured into educational resources and thus
an ideal candidate for course generation. Other domains such as language
learning exhibit different characteristics [58]. Exploring these but also do-
mains that are more closely related to mathematics such as computer
science and physics will allow insights into the generality of course gener-
ation knowledge. In addition, Paigos’s handling of competencies could be
made more abstract. The current formalization of the competency-based
scenarios uses the PISA competency model. Yet, there exist other similar
models, the best known being Bloom’s taxonomy of educational objectives
[15]. Currently, the competencies used by Paigos are encoded within the
methods. For increased generality the competencies should be external-
ized and the methods should adapt themselves dynamically to the specific
competency framework used by the course generation client.

Mediator. The mediator translates queries about the metadata of educational
resources. However, in its current state it requires that identical resources
have the same identifier throughout the repositories. Extending the map-
ping algorithm of the mediator to include mappings between instances,
that is to translate between different names of the same fundamentals,
would allow a more flexible integration of repositories. Similarly, Paigos’s
current access of learner information is not sufficiently flexible: adding a
learner model requires changes to Paigos’s source code in contrast to the

C. Ullrich: Courseware Generation for Web-Based Learning, LNAI 5260, pp. 231–232, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

232 9 Future Work and Acknowledgments

plug-and-play registration and access to repositories. As a consequence,
further research might investigate how to increase applicability of course
generation by applying the mediator framework to learner models.

Rapid Prototyping/Evaluation Tool. Due to the declarative representation of
the course generation knowledge, the knowledge can be changed and ex-
tended easily. Therefore, Paigos is an ideal candidate for rapid prototyp-
ing of adaptive systems. By using the basic axioms, operators and methods
and by modifying the existing scenarios, hypotheses about the effects of
adaptive features can be tested faster than if the adaptive system was
to be implemented from scratch. The rapid-prototyping process could be
supported by tools that allow a drag-and-drop construction/modification
of scenarios.

Deeper Integration into the Learning Process. During the evaluation of Pai-

gos in the LeActiveMath project it became obvious that students and
teachers need detailed information about how to integrate advanced tools
such as Paigos into their learning process. In a first step, we designed a
user manual for course generation that describes how to use the scenar-
ios, for instance, by suggesting a sequence of the different scenarios. It
would be worth investigating the general problem, namely how to inte-
grate course generation into a learning management system. For instance,
a suggestion component could recommend which scenario a learner should
use at a specific point during learning. This would require formalizing the
complete learning process, which might be possible with ims ld.

Authoring Support. Paigos could support the authoring process in various
ways. For instance, authors could use Paigos to assess whether they pro-
duced a sufficient amount of educational resources. In case Paigos is not
able to find a specific resource, it could make this information available
to an authoring tool.

A

Complete List of User Comments

This appendix contains the complete list of the comments1 made by the English
speaking students during the summative evaluation. In the evaluation, the subjects
were asked to state their agreement to a variety of statements about the course
generator using yes/no questions and Likert scales. After each set of statements, the
students had the opportunity to briefly explain their answers in their own words.

The first comments are the students’ explanations of their answers the following
questions:

• Are the chapters in the order you would expect?
• Are the pages in the order you would expect?

The comments are as follows:

These are in order of the topic I wanted. So that’s ok.
expected chapters in the order Average Slopes, rates of change, and fur-

ther difference quotients. The pages not also ordered in the same way
differnce quotient is first but i think it should come later. pages are in a

logical order.
The order of the chapters seems fine. I cannot suggest a more suitable

order.
I would expect chapters regaarding the same subject (ie. derivatives, or

slope) to be one after the other. I would also put chapters containg concepts
(ie. slope) useful to others (derivatives) to be presented before.

The chapters follow on from each other and each chapter follows a logical
order of pages - introduction, explanation, exercises

yes, with the connections and look back at correct place, exercises at end
of chapter. chapters lead on well from each other.

They get progressively more difficult and the later ones require the knowl-
edge of the first ones

in correct order, ie intro, explanation, exercises
The order is fine. First introduction − > Theory − > Exercises.
The chapters are in a good order- starting from basics, moving on into

concepts based on the previous ones. The pages are similarily well - ordered.

1 I did not correct spelling and grammar mistakes.

234 A Complete List of User Comments

equation of a tangent was after equation of normal
the pages go throgh the order of having inroduction then the concept then

the exercies. which seems to be a locigal order
All looks like I would expect really, it is fairly standard to have a looking

back excercise at the end etc.
Because the chapters are in the order that they were in step 4 of making

the book and the pages link on from each other
I would expect the order to be ’Definition of the Average Slope’, ’Defini-

tion of the Average Rate of Changes’ and then ’Definition of the Difference
Quotient’. To me this is a more natural progression of knowledge. However,
inside the chapters, the pages seem to be in a logical order.

The topics are in logical order and the pages build from concepts towards
exercises.

Each chapter is layed out starting with an Intro, Prerequisites and then
into the information for the topic and then exercises which is a sensible
order.

The chapters and pages were in a good order, but too similar to the
prerecorded books.

I expected the slope chapter to come before the rate chapter. The pages
are arranged in introduction, definition, then excercises which is how I would
work through them.

Each page/chapter seems to be in a logical order....
Opposite order to that listed when creating book. Prerequisites, Informa-

tion, Exercises is logical order.
The chapters seem to be in a logical order with the definitions first then

moving onto exercises. The pages started with the simple content before
moving onto what appears to be the more advanced parts.

each chapter and page follows on logically from what you’ve learned be-
fore in the previous chapter/page

Chapters and pages are ordered from the easiest to most difficult.
the order seems logical
Well i didn’t really think about chapter order but the page orders seem

logical. Definition should come first etc..
a- follow order selection when creating the book b- sequenced

The next comments are the students’ explanations of their answers the following
questions:

• Should exercises be added to the same page as the definition or to the designated
exercise page?

• Should users be permitted to remove items from personal books?
• Should users be permitted to add items from personal books?
• Should users be permitted to remove items from pre-recorded books?
• Should users be permitted to add items from pre-recorded books?

One is responsible utterly for a personal book, but should always have a
kind of backup in the form of pre-recorded book.

users should be free do do as they wish, if removing or adding items
makes a more personalized environment that sustains learning then it should
be allowed

A Complete List of User Comments 235

personal books should be allowed to be customised and these should be
used to add more knowledge to not the pre-recorded books.

Custom-made books should the modifiable, after all, that is the key reason
for making them in the first place. Pre-recorded books shouldn’t be modifiable
as they were made as they were for a good reason.

I think it’s up to the user how they structure the pages they want but
removial of set books is pintless as they have the badics for the course.

if a user makes a personal book he wants it for certain purposes. It
is natural for him to decide the contents of the book in order to suit the
purposes in the way he finds most useful. He should be able to do this by
adding or removing Items from the book. The user should be able to expand
the contents of a book if he chooses to, ie. by adding excercises. He should
also be able to take these exercises he has added off, by removing them.

I think the more freedom a user is given, the more likely they will find
the best way to learn the material for them.

personal books, being tailored for the individual should have the control
over them. for the per-recorded books i think theres a reason for all the pages
being in it so shouldnt be able to remove at will.

b) They are customized for them c) They are customized for them d) No
they are designed the way they are for a reason e) No they are designed the
way they are for a reason

this tidys up the book and makes it more relevant
personal books should be completely editable whereas pre-recorded books

should be left as they are but users should be able to add things to them and
from them.

As I understand, LAM is designed for students; as students are adults,
they should be able to easily decide about contents of their books, to suit
their particular needs.

whenever you need to change a personal book you wouldnt want to create
a new one, however editing pre-recorded books may result in an incomplete
knowledge of topics

you should be able to do anything with your own personal book. and
assuming the pre recorded books dont work like a wiki for everyone signing
in. then its reasonable to change whatever you want

Users should be able to modify their books to their needs but the pre-
recorded books should be there just for reference

Allowing the removal of things from books could lead to content being
missed. adding content will help the user to learn in their own style.

Personal books should be just that, personal. The computer should suggest
what goes in a book but ultimately if the user doesn’t want somehting in the
book tey should be able to remove it. On the other hand, a pre-recorded book
should be ’locked’ just in case a user deleted a piece of content (these books
contain the content of the course so should also be standard).

The more customisation the better as users can tailor the books/pages to
their own needs.

Its a very useful feature.
I think the personal books should have the ability to be edited, but not the

prerecorded books, this keeps things tidy in the personal book (i.e. has only

236 A Complete List of User Comments

the things that you want in it) , but also means that you can refer to the
prerecorded books if there is something missing.

Adding and removing pages from both types of book will allow the user
to further personalise their learning experience and make it more useful to
them.

a user can customize a personal book to his or her needs & it would
be easier for them to add or remove things that were relevant or irrelevent
accordingly........ pre-recorded books should be Read Only because accidental
deleting could occur

Personal books by definition should contain whatever the user wants Cus-
tomised books are what the personal feature is for, and it could be dangerous
to make pages inaccessible, or even to put an item in an inappropriate book.

Users should be able to customise how they learn
all things should be able to be altered, so that the user can get the most

out of the information, like having their own notes
Users should have influence on their personal book.
editing custom books is acceptable, however editing premade ones isnt,

the user would end up deleting the book eventually. however it would be
helpful to hide certain items

4d would be yes if these changes were reversable. altho im not sure they
should be allowed to mess around with the pre recorded books at all

b - If comfortable that they kno the info already c - Yes, update the book
and keep themselves aware of things they kno/don’t d - No, they were not
made for them e - Yes, helps update them

The following statements were made with respect to the exercise sequencer. The
students also commented the content. I included the statements since they show
how the subjects judge the appropriateness of the selected exercises.

• How matched to your level of knowledge are the exercises?
• How suitable are the types of exercises to your position as a beginner in this

area?

According to results of early completed exercises I would be in a position
to finish successfully those too.

to me the level of the maths is not challenging. a beginner would find it
some what difficult to follow through

the exercises are good as they grow in difficulty
These problems seemed quite hard considering how weakly I have met

the prerequisites.
The examples weren’t particularly challenging and suite a 1st year easily.
all the excercise required the knowledge of derivatives and in particulare

of the Product Rule, which is probably something I don’t know if I create a
book to ”Discover Product Rule”

It is quite frustrating to be presented with this format of exercise [open
exercises] as a beginner.

open ended are a bit iffy but besides that questions seemed suited
All the exercises i have attempted before have not shown a direct way to

calculate dy/dx of a function making this task impossible for someone who
has never done it before

A Complete List of User Comments 237

For me personally they could be harder but for beginners they are very
good.

1b) the difficulty seems perfect- some of the excercises were easy and
would just remind me about the principles, some required some effort and
one would actually require me to search for more knowledge. 1c) too many
open questions I think.

Some of the questions were a bit easy but others made me think a bit
harder. Some people who are just beginning might find a few of the questions
challenging

I think the exercises are fairly testing but within the reach of someone
starting this topic. However, there were a few questions that needed knowl-
edge of other differentiation methods which someone who was just learning
the product rule would not know.

The sort of language used in the notes seem convulated and not very
clear, so it wouldn’t be very good for a beginner. But the questions seem to be
more or less on the right lines, although i’d never use the words ”difference
quoteient” The loading time for the excersise sequencer and pretty much
everything is ureasonably long. takeing 2 about mins to load one question.
I’d never use it if it took that long.

Exercises seemed to be at around the correct level for someone new to
the topic

The exercises were at a really good level for my knowledge, there was a
good spread of exercises for the subject.

The questions were mainly open questions that could not give feedback
on how you were doing.

the questions seemed a bit challenging for a beginner but they were not
TOO hard either.........

Perhaps excessive use of variables rather than numbers would be hard on
a beginner as a first example?

questions seem to scale to how you cope with previous questions. It starts
slightly difficult for beginners in this area.

the exercises are fairly simple and straight forward, not requiring ad-
vanced knowledge

Some exercises may be too difficult for beginners.
The questions are well suited if the user has the right prerequisite knowl-

edge
The level seems ok...
b- questions match level of maths I know c- quite suitable

The next comments address the following questions:

• How tailored to you as a learner is the content in your personal book, Discover
Quotient Rule?

• Which would you rather use to learn about the Product Rule?

In Personal Book topics are more friendly segregated.
personal book offers a better means of understanding the product rule as

it gives information bit by bit ie in sequence
i think the personal books as it’s tailored to your knowledge and level on

comprehension

238 A Complete List of User Comments

The personal book is much leaner but I would still prefer the complete
pre-recorded book just so that I don’t miss anything that may be important.

The prerecorded books were set out ideally and in an acceptable order,
I’d use that.

in the personal book the rule is presented in a way which is more friendly
to learning. rule, application of rule, examples and then animated proof,
proof, in a separate page. In the prerecorded everything is in a less inutitive
order and all on the same page.

The personal book explained concepts such as polynomials which I didnt
know about.

pre-recorded book has more links to help with wider grasp but personal
book is more explicitly designed for the user.

I think i would use either
It is more advanced than anything i have used active math for. The pre-

recorded book is good as it proves the quotient rule
they are specifically designed and more appropriate
I prefer personal book because it is only about the product rule and no

other topics would interrupt me. The pre-recorded book is quite big and is
therefore not as clear as the personal book.

I dont think the differences between the books are particularily significant-
maybe because I didnt use LAM long enough yet. However, my personal book
is better structured and therefore easier to use.

i got the message - Sorry, there are no more exercises available! We have
to abort this exercise session. Close the window to get back to the course.
when loading the Exercise Sequencer

Personal books seem a lot better as they give content that is specific and
that is good as most people learning maths i presume will be using this to
touch up on little things they have not understood.

In the personal book they do an example of the product rule, it might be
useful to have more than one though

Whilst the personal book seems to be good for my level of knowledge, I
like to have all of the information at one time so form my point of view I
would prefer to be able to access all of the information in the pre-recorded
book.

The personal book is a bit more direct and less in-depth.
Its hard to tell what has been tailored to me as all the mastery squares

are grey even though i’m on SLM. It seems not too bad. I’d prefer the Pre
recorded book to learn about the Product rule mainly as it seems the only
one acutally mentioning the product rule. The personal book doensn’t seem
to mention the product rule

The page introduces it well and then uses several examples to show the
rule which is ideal.

The book did not seem well tailored to the standards of a beginner in the
topic but the pre-recorded book provided a wide base for the subject.

pre-recorded books would tend to maybe go into too much detail while
personal books would register the concepts that you have already grasped
etc.....

Quotient Rule is not in my personal book Either is fine for (f)
A mixture of both is best.

A Complete List of User Comments 239

both books are useful, i would start with the personal book and move on
to the pre-recorded one

In personal book I can chose the content on my own.
pretty well tailored, but i would be scared i missed something important
I would rather have the information pre-recorded as making a personal

book is quite alot of effort.
e-more detail given f-easily understanable due to detail given

References

[1] ActiveMath Group: Activemath home (2007), http://www.activemath.org/.
This is an electronic document. Date retrieved: January 29, 2007

[2] American: The American Heritage Dictionary of the English Language, 4th
edn. Houghton Mifflin Company (2004)

[3] Anderson, J.R.: The Architecture of Cognition. Harvard University Press,
Cambridge (1983)

[4] Anderson, J.R., Boyle, C.F., Farrell, R.G., Reiser, B.J.: Cognitive principles in
the design of computer tutors. In: Morris, P. (ed.) Modeling Cognition, John
Wiley, New York (1987)

[5] Anderson, J.R., Corbett, A.T., Koedinger, K.R., Pelletier, R.: Cognitive tu-
tors: Lessons learned. The Journal of the Learning Sciences 4(2), 167–207
(1995)

[6] Andre, T.: Selected microinstructional methods to facilitate knowledge con-
struction: implications for instructional design. In: Tennyson, R.D., Schott,
F., Seel, N., Dijkstra, S. (eds.) Instructional Design: International Perspec-
tive: Theory, Research, and Models, vol. 1, pp. 243–267. Lawrence Erlbaum
Associates, Mahwah (1997)

[7] Ariadne: Ariadne – foundation for the european knowledge pool (2004),
http://www.ariadne-eu.org. This is an electronic document. Date retrieved:
January 31, 2007

[8] Aroyo, L., Mizoguchi, R.: Authoring support framework for intelligent educa-
tional systems. In: Hoppe, U., Verdejo, F., Kay, J. (eds.) Proccedings of AI in
Education, AIED-2003, pp. 362–364. IOS Press, Amsterdam (2003)

[9] Ausubel, D.: The Psychology of Meaningful Verbal Learning. Grune & Strat-
ton, New York (1963)

[10] Bartle, R.G., Sherbert, D.R.: Introduction to Real Analysis. John Wiley&
Sons, New York (1982)

[11] Beck, R.J.: Learning objects collections (2001), http://www.uwm.edu/Dept/
CIE/AOP/LO collections.html. This is an electronic document. Date of pub-
lication: May 17, 2001. Date retrieved: January 19, 2007. Date last modified:
January 10, 2007

[12] Berners-Lee, T., Fielding, R., Masinter, L.: Uniform resource identifiers (uri):
Generic syntax. Technical report, RFC Editor, United States (1998)

http://www.activemath.org/
http://www.ariadne-eu.org
http://www.uwm.edu/Dept/CIE/AOP/LO_collections.html
http://www.uwm.edu/Dept/CIE/AOP/LO_collections.html

242 References

[13] Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific Ameri-
can 284(5), 34–43 (2001)

[14] Bhatti, N., Bouch, A., Kuchinsky, A.: Integrating user-perceived quality into
web server design. In: Proceedings of the 9th international World Wide Web
conference on Computer networks: the international journal of computer
and telecommunications netowrking, Amsterdam, The Netherlands, pp. 1–
16. North-Holland, Amsterdam (2000), doi: http://dx.doi.org/10.1016/S1389-
1286(00)00087-6

[15] Bloom, B.S.: Taxonomy of educational objectives: The classification of edu-
cational goals: Handbook I, cognitive domain. Longmans, Green, New York,
Toronto (1956)

[16] Brown, J.S., Collins, A., Duguid, P.: Situated cognition and the culture of
learning. Educational Researcher 18(1), 32–41 (1989)

[17] Bruner, J.S.: On knowing: Essays for the left hand. Harvard University Press,
Cambridge (1967)

[18] Brusilovsky, P.: Methods and techniques of adaptive hypermedia. User Mod-
eling and User Adapted Interaction 6(2–3), 87–129 (1996)

[19] Brusilovsky, P., Vassileva, J.: Course sequencing techniques for large-scale web-
based education. International Journal of Continuing Engineering Education
and Lifelong Learning 13(1/2), 75–94 (2003)

[20] Brusilovsky, P., Schwarz, E., Weber, G.: ELM-ART: An Intelligent Tutoring
System on the World Wide Web. In: Lesgold, A., Frasson, C., Gauthier, G.
(eds.) ITS 1996. LNCS, vol. 1086, Springer, Heidelberg (1996)

[21] Brusilovsky, P., Eklund, J., Schwarz, E.: Web-based education for all: A
tool for developing adaptive courseware. Computer Networks and ISDN Sys-
tems 30(1-7), 291–300 (1998)

[22] Burnard, L., Sperberg-McQueen, C.M.: TEI Lite: An introduction to text
encoding for interchange (2002)

[23] Caprotti: The Open Math Standard, Open Math Consortium (1998),
http://www.nag.co.uk/projects/OpenMath/omstd/

[24] Carr, B., Goldstein, I.P.: Overlays: A theory of modeling for computer aided
instruction. AI Memo 406, MIT (Feb. 1977)

[25] Cisco Systems, Inc.: Reusable learning object strategy: Designing and devel-
oping learning objects for multiple learning approaches (2003)

[26] Clancey, W.: Tutoring rules for guiding a case method dialogue. International
Journal of Man-Machine Studies 11, 25–49 (1979)

[27] Conlan, O., Wade, V., Bruen, C., Gargan, M.: Multi-model, metadata driven
approach to adaptive hypermedia services for personalized elearning. In: De
Bra, P., Brusilovsky, P., Conejo, R. (eds.) AH 2002. LNCS, vol. 2347, pp.
100–111. Springer, Heidelberg (2002)

[28] Conlan, O., Lewis, D., Higel, S., O’Sullivan, D., Wade, V.: Applying adaptive
hypermedia techniques to semantic web service composition. In: de Bra, P.
(ed.) Proceedings of AH2003: Workshop on Adaptive Hypermedia and Adap-
tive Web-Based Systems, Budapest, Hungary, May 20-24, pp. 53–62 (2003)

[29] Currie, K., Tate, A.: O-plan: The open planning architecture. Artificial Intel-
ligence 52(1), 49–86 (1991)

[30] De Bra, P.: Pros and cons of adaptive hypermedia in web-based education.
Journal on CyberPsychology and Behavior 3(1), 71–77 (2000)

http://www.nag.co.uk/projects/OpenMath/omstd/

References 243

[31] De Bra, P.: ah — adaptivehypertext and hypermedia (2007), http://pegasus.
tue.nl/mailman/listinfo/ah This is an electronic document. Date retrieved:
March 19, 2007

[32] De Bra, P., Houben, G.-J., Wu, H.: AHAM: a Dexter-based reference model for
adaptive hypermedia. In: HYPERTEXT ’99: Proceedings of the tenth ACM
Conference on Hypertext and hypermedia: returning to our diverse roots,
Darmstadt, Germany, pp. 147–156. ACM Press, New York (1999)

[33] de Bruijn, J., Foxvog, D., Zimmermann, K.: Ontology Mediation Patterns
Library V1. D4.3.1, SEKT-project (February 2005)

[34] Dijkstra, S., Seel, N.M., Scott, F., Tennyson, R.D.: Instructional Design: Inter-
national Perspectives. Solving Instructional Design Problems, vol. 2. Lawrence
Erlbaum Associates, Mahwah (1997)

[35] Dimitrova, V.: STyLE-OLM: Interactive open learner modelling. International
Journal of Artificial Intelligence in Education 13, 35–78 (2002)

[36] Dodds, P., Thropp, S.E.: Sharable content object reference model 2004 3rd
edition overview version 1.0. Technical report, Advanced Distributed Learning
(2004)

[37] du Boulay, B., Luckin, R.: Modelling human teaching tactics and strategies
for tutoring systems. International Journal of Artificial Intelligence in Educa-
tion 12(3), 235–256 (2001)

[38] Duval, E.: Metadata standards: What, who & why. Journal of Universal Com-
puter Science 7(7), 591–601 (2001)

[39] Duval, E.: Metadata, but not as you know it: electronic forms are dead. In:
Proceedings of Interactive Computer aided Learning, ICL2005, Villach, Aus-
tria, published on CD-ROM (2005)

[40] Erol, K., Hendler, J., Nau, D.S.: Complexity results for hierarchical task-
network planning. Annals of Mathematics and Artificial Intelligence 18(1),
69–93 (1996)

[41] Fikes, R.E., Nilsson, N.J.: STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence 2, 189–208 (1971)

[42] Fox, M., Long, D.: PDDL2.1: An extension to PDDL for expressing temporal
planning domains. Journal of Artificial Intelligence Research, Special Issue on
the 3rd International Planning Competition 20, 61–124 (2003)

[43] Friedman-Hill, E.: Jess, the java expert system shell. Technical Report
SAND98-8206, Sandia National Laboratories (1997)

[44] Gagné, R.M.: The Conditions of Learning and Theory of Instruction. Holt,
Rinehart & Winston, New York (1965)

[45] Gardner, H.: Multiple approaches to understanding. In: Reigeluth, C.M. (ed.)
Instructional Design Theories and Models: A New Paradigm of Instructional
Theory, vol. 2, pp. 69–89. Lawrence Erlbaum, Mahwah (1999)

[46] GEM Consortium: GEM 2.0: Element descriptions. Technical report, Gateway
to Educational Materials Project (November 2004)

[47] ims Global Learning Consortium. ims content packaging information model,
June (2003a)

[48] ims Global Learning Consortium. ims learning design specification, February
(2003b)

[49] ims Global Learning Consortium. ims simple sequencing specification, March
(2003c)

http://pegasus.tue.nl/mailman/listinfo/ah
http://pegasus.tue.nl/mailman/listinfo/ah

244 References

[50] ims Global Learning Consortium. ims question and test interoperability: ASI
information model specification, final specification version 1.2 (2002)

[51] Goguadze, G., Palomo, A.G., Melis, E.: Interactivity of Exercises in Active-
Math. In: In Proceedings of the 13th International Conference on Computers
in Education (ICCE 2005), Singapore, pp. 107–113 (2005)

[52] Grabowski, B.L., Gäng, S., Herter, J., Köppen, T.: MathCoach und Laplace-
Skript: Ein programmierbarer interaktiver Mathematiktutor mit XML-
basierter Skriptsprache. In: Jantke, K.P., Fähnrich, K.-P., Wittig, W.S. (eds.)
Leipziger Informatik-Tage. LNI, vol. 72, pp. 211–218. GI (2005)

[53] Gruber, T.R.: A translation approach to portable ontology specifications.
Knowl. Acquis. 5(2), 199–220 (1993), doi: http://dx.doi.org/10.1006/

knac.1993.1008

[54] Halasz, F., Schwartz, M.: The dexter hypertext reference model. Communica-
tions of the ACM 37(2), 30–39 (1994)

[55] Hayashi, Y., Bourdeau, J., Mizoguchi, R.: Ontological support for a theory-
eclectic approach to instructional and learning design. In: Nejdl, W., Tochter-
mann, K. (eds.) EC-TEL 2006. LNCS, vol. 4227, pp. 155–169. Springer, Hei-
delberg (2006a)

[56] Hayashi, Y., Bourdeau, J., Mizoguchi, R.: Ontological modeling approach to
blending theories for instructional and learning design. In: Mizoguchi, R., Dil-
lenbour, P., Zhu, Z. (eds.) Proceedings of the 14th International Conference on
Computers in Education, Beijing, China, pp. 37–44. IOS Press, Amsterdam
(2006b)

[57] Heflin, J.: OWL web ontology language use cases and requirements. W3C rec-
ommendation, W3C (Feb. 2004), http://www.w3.org/TR/2004/REC-webont-
req-20040210/

[58] Heilman, M., Eskenazi, M.: Language learning: Challenges for intelligent tu-
toring systems. In: Aleven, V., Pinkwart, N., Ashley, K., Lynch, C. (eds.)
Proceedings of the Workshop of Intelligent Tutoring Systems for Ill-Defined
Domains at the 8th International Conference on Intelligent Tutoring Systems
(2006)

[59] Henze, N., Nejdl, W.: A logical characterization of adaptive educational hy-
permedia. Hypermedia 10(1), 77–113 (2004)

[60] IClass Consortium: iclass (2004), http://www.iclass.info. This is an elec-
tronic document. Date retrieved: January 20, 2007

[61] ieee Learning Technology Standards Committee: ieee learning technology
standards committee (2005), http://ieeeltsc.org/. This is an electronic
document. Date of publication: March 19, 2005. Date retrieved: January 29,
2007. Date last modified: November 16, 2006

[62] Ilghami, O.: Documentation for JSHOP2. Technical Report CS-TR-4694, De-
partment of Computer Science, University of Maryland (February 2005)

[63] Ilghami, O., Nau, D.S.: A general approach to synthesize problem-specific
planners. Technical Report CS-TR-4597, Department of Computer Science,
University of Maryland (October 2003)

[64] IMS Global Learning Consortium: Welcome to IMS global learning consor-
tium, inc. (2007), http://www.imsglobal.org/. This is an electronic docu-
ment. Date retrieved: January 31, 2007. Date last modified: January 28, 2007

http://dx.doi.org/10.1006/knac.1993.1008
http://dx.doi.org/10.1006/knac.1993.1008
http://www.w3.org/TR/2004/REC-webont-req-20040210/
http://www.w3.org/TR/2004/REC-webont-req-20040210/
http://www.iclass.info
http://ieeeltsc.org/
http://www.imsglobal.org/

References 245

[65] International Organization for Standardization: Electronic manuscript prepa-
ration and markup, document number: ANSI/NISO/ISO 12083 (April 1995)

[66] Jantke, K.P., Grieser, G., Lange, S., Memmel, M.: DaMiT: Data Mining ler-
nen und lehren. In: Abecker, A., Bickel, S., Brefeld, U., Drost, I., Henze, N.,
Herden, O., Minor, M., Scheffer, T., Stojanovic, L., Weibelzahl, S. (eds.) LWA
2004, Lernen — Wissensentdeckung —Adaptivität, Oct. 2004, pp. 171–179.
Humboldt-Universität Berlin (2004)

[67] Jeffery, A., Currier, S.: What is. . . IMS learning design? Standards briefings
series, cetis (2003)

[68] Jonassen, D.: Designing constructivist learning environments. In: Reigeluth,
C.M. (ed.) Instructional Design Theories and Models: A New Paradigm of
Instructional Theory, vol. 2, pp. 215–239. Lawrence Erlbaum, Mahwah (1999)

[69] Jones, M., Li, Z., Merrill, M.D.: Domain knowledge representation for instruc-
tional analysis. Educational Technology 10(30) (1990)

[70] Kaleidoscope: Kaleidoscope (2007), http://www.noe-kaleidoscope.org.
This is an electronic document. Date retrieved: January 20, 2007

[71] Karampiperis, P., Sampson, D.: Adaptive learning resources sequencing in
educational hypermedia systems. Educational Technology & Society 8(4), 128–
147 (2005a)

[72] Karampiperis, P., Sampson, D.: Automatic learning object selection and se-
quencing in web-based intelligent learning systems. In: Ma, Z. (ed.) Web-Based
Intelligent e-Learning Systems: Technologies and Applications, pp. 56–71. In-
formation Science Publishing (2005b)

[73] Kärger, P.: Ontologie-basierter Mediator zum Zugriff auf heterogene und
verteilte Lerninhalte. Master’s thesis, Universität des Saarlandes (March 2006)

[74] Kärger, P., Ullrich, C., Melis, E.: Integrating learning object repositories us-
ing a mediator architecture. In: Nejdl, W., Tochtermann, K. (eds.) EC-TEL
2006. LNCS, vol. 4227, pp. 185–197. Springer, Heidelberg (2006a), http://
www.carstenullrich.net/pubs/kaergeretal-mediator-ectel06.pdf

[75] Kärger, P., Ullrich, C., Melis, E.: Querying learning object repositories
via ontology-based mediation. In: Kinshuk, Kopers, R., Kommers, P.,
Kirschner, P., Sampson, D.G., Didderen, W. (eds.) Proceedings of the 6th
IEEE International Conference on Advanced Learning Technologies, July
2006, pp. 845–846. IEEE Computer Society Press, Los Alamitos (2006b),
http://www.carstenullrich.net/pubs/icalt06_mediator.pdf

[76] Kay, J., Kummerfeld, B., Lauder, P.: Personis: A server for user models. In:
De Bra, P., Brusilovsky, P., Conejo, R. (eds.) AH 2002. LNCS, vol. 2347, pp.
203–212. Springer, Heidelberg (2002)

[77] Kearlsey, G.: Authoring considerations for hypertext. Educational Technol-
ogy 28(11), 21–24 (1988)

[78] Keeffe, I.O., Brady, A., Conlan, O., Wade, V.: Just-in-time generation of ped-
agogically sound, context sensitive personalized learning experiences. Interna-
tional Journal on E-Learning 5(1), 113–127 (2006)

[79] Keenoy, K., Levene, M., Peterson, D.: Personalisation and trails in self e-
learning networks. WP4 Deliverable 4.2, IST Self E-Learning Networks (2003)

http://www.noe-kaleidoscope.org
http://www.carstenullrich.net/pubs/kaergeretal-mediator-ectel06.pdf
http://www.carstenullrich.net/pubs/kaergeretal-mediator-ectel06.pdf
http://www.carstenullrich.net/pubs/icalt06_mediator.pdf

246 References

[80] Keenoy, K., Poulovassilis, A., Papamarkos, G., Wood, P.T., Christophides,
V., Maganaraki, A., Stratakis, M., Rigaux, P., Spyratos, N.: Adaptive per-
sonalisation in self e-learning networks. In: Proceedings of First International
Kaleidoscope Learning Grid SIG Workshop on Distributed e-Learning Envi-
ronments, Napoly, Italy (2005)

[81] Klieme, E., Avenarius, H., Blum, W., Döbrich, P., Gruber, H., Prenzel, M.,
Reiss, K., Riquarts, K., Rost, J., Tenorth, H., Vollmer, H.J.: The development
of national educational standards - an expertise. Technical report, Bundesmin-
isterium für Bildung und Forschung / German Federal Ministry of Education
and Research (2004)

[82] Knight, C., Gašević, D., Richards, G.: An ontology-based framework for bridg-
ing learning design and learning content. Educational Technology and Soci-
ety 9(1), 23–37 (2006)

[83] Koch, N., Wirsing, M.: The Munich reference model for adaptive hypermedia
applications. In: De Bra, P., Brusilovsky, P., Conejo, R. (eds.) AH 2002. LNCS,
vol. 2347, pp. 213–222. Springer, Heidelberg (2002)

[84] Kohlhase, M.: Omdoc: Towards an internet standard for the administration,
distribution, and teaching of mathematical knowledge. In: Campbell, J.A.,
Roanes-Lozano, E. (eds.) AISC 2000. LNCS (LNAI), vol. 1930, p. 32. Springer,
Heidelberg (2001)

[85] Kohlhase, M.: OMDoc – An Open Markup Format for Mathematical Docu-
ments. Springer, Heidelberg (2006)

[86] Koper, R.: From change to renewal: Educational technology foun-
dations of electronic learning environments. published online (2000),
http://eml.ou.nl/introduction/docs/koper-inaugural-address.pdf

[87] Krämer, B.J.: Reusable learning objects: Let’s give it another trial.
Forschungsberichte des Fachbereichs Elektrotechnik, ISSN 0945-0130, Fernuni-
versität Hagen (2005)

[88] Libbrecht, P., Melis, E., Ullrich, C.: Generating Personalized Documents
Using a Presentation Planner. In: Montgomerie, C., Viteli, J. (eds.) Pro-
ceedings of World Conference on Educational Multimedia, Hypermedia
and Telecommunications 2001, Norfolk, VA, pp. 1124–1125. AACE (2001),
http://www.carstenullrich.net/pubs/edmedia01.pdf

[89] Lu, T.: Kursgenerator für e-learning syteme als web-service. Master’s thesis,
Hochschule für Technik und Wirtschaft des Saarlandes (2006)

[90] Lucke, U., Tavangarian, D., Voigt, D.: Multidimensional Educational Mul-
timedia with ML3. In: Richards, G. (ed.) Proceedings of World Conference
on E-Learning in Corporate, Government, Healthcare, and Higher Education
2003, Phoenix, Arizona, USA, pp. 101–104. AACE (2003)

[91] Lumsden, L.S.: Student motivation to learn. ERIC Digest 92 (1994)
[92] Mann, W.C., Thompson, S.A.: Rhetorical structure theory: Toward a func-

tional theory of text organization. Text 8(3), 243–281 (1988)
[93] Manola, F., Miller, E.: RDF primer. W3C recommendation, W3C (Feb. 2004),

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

[94] Mantyka, S.: The Math Plague: How to Survive School Mathematics. MayT
Consulting Cooperation (2007)

[95] Mayer, R.E.: Multimedia Learning. Cambridge University Press, New York
(2001)

http://eml.ou.nl/introduction/docs/koper-inaugural-address.pdf
http://www.carstenullrich.net/pubs/edmedia01.pdf
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

References 247

[96] Mayes, J.T.: Cognitive tools: A suitable case for learning. In: Kommers,
P.A.M., Jonassen, D.H., Mayes, J.T. (eds.) Cognitive Tools for Learning.
NATO ASI Series, Series F: Computer and Systems Science, vol. 81, pp. 7–18.
Springer, Berlin (1992)

[97] McCarthy, B.: About Learning. Excell Inc., Barrington (1996)
[98] McCarthy, J., Minsky, M.L., Rochester, N., Shannon, C.: A proposal for

the Dartmouth summer research project on Artificial Intelligence (1955),
http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html

[99] McCollum, B.: Advanced distributed learning - home (2005), http://www.

adlnet.gov/. This is an electronic document. Date of publication: April 13,
2005. Date retrieved: January 31, 2007. Date last modified: January 12, 2007

[100] McDermott, D.: The 1998 AI planning systems competition. AI Maga-
zine 21(2), 35–55 (2000)

[101] McDermott, D.: PDDL, the planning domain definition language. Technical
Report 1165, Yale Center for Computational Vision and Control, New Haven,
CT (1998), ftp://ftp.cs.yale.edu/pub/mcdermott/software/pddl.tar.gz

[102] Meder, N.: Didaktische Ontologien. Accessed online (2003)
[103] Melis, E., Andres, E.: Global Feedback in ActiveMath. Journal of Computers

in Mathematics and Science Teaching 24, 197–220 (2005)
[104] Melis, E., Siekmann, J.: Knowledge-based proof planning. Artificial Intelli-

gence 115(1), 65–105 (1999)
[105] Melis, E., Ullrich, C.: How to teach it – Polya-scenarios in activemath. In:

Hoppe, U., Verdejo, F., Kay, J. (eds.) Artificial Intelligence in Education, pp.
141–147. IOS Press, Amsterdam (2003), http://www.carstenullrich.net/

pubs/HowToTeachItPolyaScenariosActiveMath.pdf

[106] Melis, E., Andrès, E., Büdenbender, J., Frischauf, A., Goguadze, G., Lib-
brecht, P., Pollet, M., Ullrich, C.: Activemath: A generic and adaptive
web-based learning environment. International Journal of Artificial Intelli-
gence in Education 12(4), 385–407 (2001), http://www.carstenullrich.net/
pubs/Melisetal-ActiveMath-AIEDJ-2001.pdf

[107] Melis, E., Büdenbender, J., Goguadze, G., Libbrecht, P., Pollet, M., Ullrich, C.:
Knowledge representation and management in activemath. Annals of Math-
ematics and Artificial Intelligence, Special Issue on Management of Mathe-
matical Knowledge 38(1–3), 47–64 (2003), http://www.carstenullrich.net/
pubs/Knowledge Representation in ActiveMath.pdf

[108] Melis, E., Kärger, P., Homik, M.: Interactive Concept Mapping in ActiveMath
(iCMap). In: Haake, J.M., Lucke, U., Tavangarian, D. (eds.) Delfi 2005: 3.
Deutsche eLearning Fachtagung Informatik, Rostock, Germany, Sept. 2005.
LNI, vol. 66, pp. 247–258. Gesellschaft für Informatik e.V., GI (2005)

[109] Melis, E., Goguadze, G., Homik, M., Libbrecht, P., Ullrich, C., Winterstein,
S.: Semantic-aware components and services of ActiveMath. British Journal of
Educational Technology 37(3), 405–423 (2006), http://www.carstenullrich.
net/pubs/Melisetal-SemanticAware-BJET-2005.pdf

[110] Melis, E., Shen, R., Siekmann, J., Ullrich, C., Yang, F., Han, P.: Challenges in
search and usage of multi-media learning objects. In: Lu, R., Siekmann, J.H.,
Ullrich, C. (eds.) Joint Chinese German Workshops. LNCS (LNAI), vol. 4429,
pp. 36–44. Springer, Heidelberg (2007), http://www.carstenullrich.net/

pubs/Melisetal-MultimediaLOs-WSCS-2007.pdf

http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html
http://www.adlnet.gov/
http://www.adlnet.gov/
ftp://ftp.cs.yale.edu/pub/mcdermott/software/pddl.tar.gz
http://www.carstenullrich.net/pubs/HowToTeachItPolyaScenariosActiveMath.pdf
http://www.carstenullrich.net/pubs/HowToTeachItPolyaScenariosActiveMath.pdf
http://www.carstenullrich.net/pubs/Melisetal-ActiveMath-AIEDJ-2001.pdf
http://www.carstenullrich.net/pubs/Melisetal-ActiveMath-AIEDJ-2001.pdf
http://www.carstenullrich.net/pubs/Knowledge_Representation_in_ActiveMath.pdf
http://www.carstenullrich.net/pubs/Knowledge_Representation_in_ActiveMath.pdf
http://www.carstenullrich.net/pubs/Melisetal-SemanticAware-BJET-2005.pdf
http://www.carstenullrich.net/pubs/Melisetal-SemanticAware-BJET-2005.pdf
http://www.carstenullrich.net/pubs/Melisetal-MultimediaLOs-WSCS-2007.pdf
http://www.carstenullrich.net/pubs/Melisetal-MultimediaLOs-WSCS-2007.pdf

248 References

[111] Méndez, N.D.D., Ramı́rez, C.J., Luna, J.A.G.: IA planning for automatic gen-
eration of customized virtual courses. In: Frontiers In Artificial Intelligence
And Applications, Proceedings of ECAI 2004, Valencia (Spain), vol. 117, pp.
138–147. IOS Press, Amsterdam (2004)

[112] Merceron, A., Yacef, K.: A web-based tutoring tool with mining facilities to
improve learning and teaching. In: Proceedings of the 11th International Con-
ference on Artificial Intelligence in Education, Sydney, Australia (2003)

[113] Merceron, A., Oliveira, C., Scholl, M., Ullrich, C.: Mining for content re-
use and exchange – solutions and problems. In: Poster Proceedings of
the 3rd International Semantic Web Conference, ISWC2004, Hiroshima,
Japan, Nov. 2004, pp. 39–40 (2004), http://www.carstenullrich.net/

pubs/Merceronetal-Mining-ISWC-2004.pdf

[114] Van Merriënboer, J.J.G.: Training Complex Cognitive Skills. Educational
Technology Publications, Inc., Englewood Cliffs (1997)

[115] Merrill, M.D.: First principles of instruction. Educational Technology Research
& Development 50(3), 43–59 (2002)

[116] Miklos, Z., Neumann, G., Zdun, U., Sintek, M.: Querying Semantic Web Re-
sources Using TRIPLE Views. In: Kalfoglou, Y., Schorlemmer, M., Sheth,
A., Staab, S., Uschold, M. (eds.) Semantic Interoperability and Integra-
tion, Dagstuhl, Germany. Dagstuhl Seminar Proceedings, Internationales
Begegnungs- und Forschungszentrum (IBFI), Schloss Dagstuhl, Germany
(2005)

[117] Mizoguchi, R., Bourdeau, J.: Using ontological engineering to overcome AI-ED
problems. International Journal of Artificial Intelligence in Education 11(2),
107–121 (2000)

[118] Monk, A., Wright, P., Haber, J., Davenport, L.: Improving your human-
computer interface: A practical technique. Prentice-Hall, Englewood Cliffs
(1993)

[119] Moodle: Moodle (2007), http://moodle.org/. This is an electronic document.
Date retrieved: May 16, 2007

[120] Mularczyk, D.: International forum ofeducational technology & society (2004),
http://ifets.ieee.org/. This is an electronic document. Date retrieved:
March 19, 2007. Date last modified: October 9, 2004

[121] Murray, W.R.: Control for intelligent tutoring systems: A blackboard-based
dynamic instructional planner. In: Bierman, D., Breuker, J., Sandberg, J.
(eds.) Proc. 4th International Conference of AI and Education, Springfield
VA, Tokyo, pp. 150–168. IOS Press, Amsterdam (1989)

[122] Nau, D.S., Smith, S.J.J., Erol, K.: Control strategies in HTN planning: the-
ory versus practice. In: AAAI ’98/IAAI ’98: Proceedings of the fifteenth na-
tional/tenth conference on Artificial intelligence/Innovative applications of ar-
tificial intelligence, Madison, Wisconsin, United States, pp. 1127–1133. AAAI
Press, Menlo Park (1998)

[123] Nau, D.S., Cao, Y., Lotem, A., Muñoz-Avila, H.: SHOP: Simple hierarchical
ordered planner. In: IJCAI ’99: Proceedings of the Sixteenth International
Joint Conference on Artificial Intelligence, San Francisco, CA, USA, pp. 968–
975. Morgan Kaufmann, San Francisco (1999)

http://www.carstenullrich.net/pubs/Merceronetal-Mining-ISWC-2004.pdf
http://www.carstenullrich.net/pubs/Merceronetal-Mining-ISWC-2004.pdf
http://moodle.org/
http://ifets.ieee.org/

References 249

[124] Nau, D.S., Muñoz-Avila, H., Cao, Y., Lotem, A., Mitchell, S.: Total-order
planning with partially ordered subtasks. In: Nebel, B. (ed.) Proceedings of
the Seventeenth International Joint Conference on Artificial Intelligence, IJ-
CAI 2001, Seattle, Washington, USA, pp. 425–430. Morgan Kaufmann, San
Francisco (2001)

[125] Nau, D.S., Au, T.-C., Ilghami, O., Kuter, U., Murdock, J.W., Wu, D., Ya-
man, F.: SHOP2: An HTN Planning System. Journal of Artificial Intelligence
Research 20, 379–404 (2003)

[126] Nau, D.S., Au, T.-C., Ilghami, O., Kuter, U., Muñoz-Avila, H., Murdock, J.W.,
Wu, D., Yaman, F.: Applications of SHOP and SHOP2. Technical Report CS-
TR-4604, Department of Computer Science, University of Maryland (2004)

[127] Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M.,
Palmér, M., Risch, T.: Edutella: a P2P networking infrastructure based on
RDF. In: WWW ’02: Proceedings of the 11th international conference on
World Wide Web, Honolulu, Hawaii, USA, pp. 604–615. ACM Press, New
York (2002)

[128] Nelson, L.M.: Collaborative problem solving. In: Reigeluth, C.M. (ed.) Instruc-
tional Design Theories and Models: A New Paradigm of Instructional Theory,
vol. 2, pp. 241–267. Lawrence Erlbaum, Mahwah (1999)

[129] Nielsen, J.: Heuristic evaluation. In: Nielsen, J., Mack, R.L. (eds.) Usability
inspection methods, pp. 25–62. John Wiley & Sons, Inc, New York (1994)

[130] Nilsson, M., Palmér, M., Brasse, J.: The lom rdf binding – principles and
implementation. In: Proceedings of the 3rd Annual Ariadne Conference, Leu-
ven, Belgium (2003), Published online: http://www.kbs.uni-hannover.de/

Arbeiten/Publikationen/2003/LOM binding nilsson brase.pdf

[131] Niss, M.: Mathematical competencies and the learning of mathematics: the
danish KOM project. Technical report, IMFUFA, Roskilde University (2002)

[132] Noble, D.D.: The Classroom Arsenal: Military Research, Information Tech-
nology and Public Education. The Falmer Press, New York (1991)

[133] Novak, J.D., Gowin, D.B.: Learning How to Learn. Cambridge University
Press, New York (1984)

[134] Noy, N.F., McGuinness, D.L.: Ontology development 101: A guide to creating
your first ontology. Stanford Medical Informatics Technical Report SMI-2001-
0880, Stanford University (2001)

[135] OASIS: OASIS SOA reference model (2006), http://www.oasis-open.org/

committees/soa-rm/faq.php. This is an electronic document. Date retrieved:
January 22, 2007

[136] Object Management Group: Object Management Group — UML (2007),
http://www.uml.org/. This is an electronic document. Date retrieved: Jan-
uary 22, 2007. Date last modified: January 2, 2007

[137] OECD (ed.): Learning for Tomorrows World — First Results from PISA 2003.
Organisation for Economic Co-operation and Development (OECD) Publish-
ing (2004)

[138] OECD (ed.): Measuring Student Knowledge and Skills – A New Framework
for Assessment. OECD Publishing, Paris, France (1999)

[139] OECD (ed.): PISA – the OECD programme for international student assess-
ment. Brochure (2007)

[140] Papert, S.: Mindstorms: Children, Computers, and Powerful Ideas. Basic
Books, New York (1980)

http://www.kbs.uni-hannover.de/Arbeiten/Publikationen/2003/LOM_binding_nilsson_brase.pdf
http://www.kbs.uni-hannover.de/Arbeiten/Publikationen/2003/LOM_binding_nilsson_brase.pdf
http://www.oasis-open.org/committees/soa-rm/faq.php
http://www.oasis-open.org/committees/soa-rm/faq.php
http://www.uml.org/

250 References

[141] Pawlowski, J.M.: Das Essener-Lern-Modell (ELM): Ein Vorgehensmodell zur
Entwicklung computerunterstützter Lernumgebungen. PhD thesis, Universität
Gesamthochschule Essen, Essen (2001)

[142] Pazienza, M.T., Stellato, A., Vindigni, M., Zanzotto, F.M.: XeOML: An XML-
based extensible Ontology Mapping Language. In: Workshop on Meaning Co-
ordination and Negotiation, held in conjunction with 3rd International Se-
mantic Web Conference (ISWC-2004) Hiroshima, Japan (November 2004)

[143] Peachy, D.R., McCalla, G.I.: Using planning techniques in intelligent tutoring
systems. International Journal of Man-Machine Studies 24(1), 77–98 (1986)

[144] Pintrich, P.R.: The role of motivation in promoting and sustaining self-
regulated learning. International Journal of Educational Research 31, 459–470
(1999)

[145] PLATO Learning, Inc.: Plato learning (2007), http://www.plato.com/. This
is an electronic document. Date retrieved: January 16, 2007

[146] Polya, G.: How to Solve it. Princeton University Press, Princeton (1973)
[147] Prenzel, M., Drechsel, B., Carstensen, C.H., Ramm, G.: PISA 2003 - Eine

Einführung. In: Deutschland, P.-K. (ed.) PISA 2003 - Der Bildungsstand der
Jugendlichen in Deutschland - Ergebnisse des zweiten internationalen Vergle-
ichs, pp. 13–46. Waxmann Verlag, Münster (2004)

[148] Random: Random House Unabridged Dictionary. Random House, Inc. (2006)
[149] Reigeluth, C.M.: Instructional Design Theories and Models: An Overview on

their Current Status, vol. 1. Lawrence Erlbaum Associates, Hillsdale (1983)
[150] Reigeluth, C.M.: Instructional Design Theories and Models: A New Paradigm

of Instructional Theory, vol. 2. Lawrence Erlbaum Associates, Mahwah (1999)
[151] Reinmann-Rothmeier, G., Mandl, H.: Unterrichten und Lernumgebungen

gestalten. In: Krapp, A., Weidmann, W. (eds.) Pädagogische Psychologie. Ein
Lehrbuch, 4th edn., pp. 601–646. Beltz PVU, Weinheim (2001)

[152] Reiter, E.: NLG vs. Templates. In: Proceedings of the Fifth European Work-
shop on Natural Language Generation, Leiden, The Netherlands, May 1995,
pp. 95–105 (1995)

[153] Reiter, E., Dale, R.: Building Natural Language Generation Systems. Cam-
bridge University Press, Cambridge (2000)

[154] Reusable Learning. Reusable learning (2007), http://www.reusablelear

ning.org/glossary.asp. This is an electronic document. Date retrieved: Jan-
uary 29, 2007

[155] Rich, E.: User modeling via stereotypes. Cognitive Science 3, 329–354 (1979)
[156] Rostanin, O., Ullrich, C., Holz, H., Song, S.: Project TEAL: Add adap-

tive e-learning to your workflows. In: Tochtermann, K., Maurer, H. (eds.)
Proceedings: I-KNOW’06, 6th International Conference on Knowledge Man-
agement, Graz, Austria, Sept. 2006, pp. 395–402 (2006), http://www.

carstenullrich.net/pubs/Rostaninetal-TEAL-IKNOW-2006.pdf

[157] Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson,
London (2003)

[158] Sacerdoti, E.: The nonlinear nature of plans. In: The Proceedings of the 4th In-
ternational Joint Conference on Artificial Intelligence, Tiblisi, USSR, Septem-
ber 1975, pp. 206–214. Morgan Kaufmann, San Francisco (1975)

[159] Sancho, P., Mart́ınez, I., Fernández-Manjón, B.: Semantic web technologies
applied to e-learning personalization in e-aula. Journal of Universal Computer
Science 11(9), 1470–1481 (2005)

http://www.plato.com/
http://www.reusablelearning.org/glossary.asp
http://www.reusablelearning.org/glossary.asp
http://www.carstenullrich.net/pubs/Rostaninetal-TEAL-IKNOW-2006.pdf
http://www.carstenullrich.net/pubs/Rostaninetal-TEAL-IKNOW-2006.pdf

References 251

[160] Schank, R.C., Berman, T.R., Macperson, K.A.: Learning by doing. In: Reige-
luth, C.M. (ed.) Instructional Design Theories and Models: A New Paradigm of
Instructional Theory, vol. 2, pp. 161–181. Lawrence Erlbaum, Mahwah (1999)

[161] Schöch, V., Specht, M., Weber, G.: ADI - an empirical evaluation of a tutorial
agent. In: Ottmann, T., Tomek, I. (eds.) Proceedings of ED-MEDIA/ED-
TELECOM’98 - 10th World Conference on Educational Multimedia and
Hypermedia and World Conference on Educational Telecommunications,
Freiburg, Germany, pp. 1242–1247 (1998)

[162] Schulmeister, R.: Grundlagen hypermedialer Lernsysteme. Oldenbourg,
München, Germany (2002). English version available online at http://

www.izhd.uni-hamburg.de/paginae/Book/Frames/start frame.html, Last
accessed 29.10.2007

[163] Schulmeister, R.: eLearning: Einsichten und Aussichten. Oldenbourg,
München, Germany (2006)

[164] Schwartz, D.L., Lin, X., Brophy, S., Bransford, J.D.: Toward the development
of flexibly adaptive instructional designs. In: Reigeluth, C.M. (ed.) Instruc-
tional Design Theories and Models: A New Paradigm of Instructional Theory,
vol. 2, pp. 183–213. Lawrence Erlbaum, Mahwah (1999)

[165] Scriven, M.: Beyond formative and summative evaluation. In: McLaughlin,
M.W., Phillips, D.C. (eds.) Evaluation and Education: A Quarter Century,
pp. 18–64. University of Chicago Press, Chicago (1991)

[166] Shneiderman, B., Plaisant, C.: Designing the User Interface: Strategies for
Effective Human-Computer Interaction. Addison-Wesley, Reading (2004)

[167] Sicilia, M.-A., Sánchez-Alonso, S., Garćıa-Barriocanal, E.: On supporting the
process of learning design through planners. In: Virtual Campus 2006 Post-
proceedings. Selected and Extended Papers, pp. 81–89 (2006)

[168] Simon, B., Massart, D., van Assche, F., Ternier, S., Duval, E., Brantner, S.,
Olmedilla, D., Miklos, Z.: A simple query interface for interoperable learning
repositories. In: Simon, B., Olmedilla, D., Saito, N. (eds.) Proceedings of the
1st Workshop on Interoperability of Web-based Educational Systems, Chiba,
Japan, May 2005, pp. 11–18. CEUR (2005)

[169] Skinner, B.F.: The Technology of Teaching. Appleton-Century-Crofts, New
York (1968)

[170] Spaulding, S.: Technology in education: Past, present, and future. In:
Bianchéri, A., Hilgard, E.R., Hurwitz, H.M.B., Komoski, P.K., Randell, G.A.,
Schaefer, H.H., Schultze, W. (eds.) International Konferenz: Programmierter
Unterricht und Lehrmaschinen, July 1964, pp. 134–148. Franz Cornelsen Ver-
lag (1964)

[171] Specht, M., Oppermann, R.: ACE - adaptive courseware environment. The
New Review of Hypermedia and Multimedia 4, 141–162 (1998)

[172] Specht, M., Kravcik, M., Pesin, L., Klemke, R.: Authoring adaptive educa-
tional hypermedia in WINDS. In: Henze, N. (ed.) Proc. of the ABIS 2001
Workshop (2001)

[173] Sperberg-McQueen, C.M., Bray, T., Yergeau, F., Maler, E., Paoli, J.: Exten-
sible markup language (XML) 1.0 (fourth edition). W3C recommendation,
W3C (Aug. 2006), http://www.w3.org/TR/2006/REC-xml-20060816

[174] Steels, L.: Components of expertise. AI Magazine 11(2), 30–49 (1990)

http://www.izhd.uni-hamburg.de/paginae/Book/Frames/start_frame.html
http://www.izhd.uni-hamburg.de/paginae/Book/Frames/start_frame.html
http://www.w3.org/TR/2006/REC-xml-20060816

252 References

[175] Stern, M.K., Park Woolf, B.: Curriculum sequencing in a web-based tutor. In:
Goettl, B.P., Halff, H.M., Redfield, C.L., Shute, V.J. (eds.) ITS 1998. LNCS,
vol. 1452, pp. 574–583. Springer, Heidelberg (1998)

[176] Studer, R., Hotho, A., Stumme, G., Volz, R.: Semantic web - state of the art
and future directions. KI 17, 5–8 (2003)

[177] Tate, A.: Generating project networks. In: Proceedings of the Fifth Interna-
tional Joint Conference on Artificial Intelligence, pp. 888–893. Morgan Kauf-
mann, San Francisco (1977)

[178] Tennyson, R.D., Scott, F., Seel, N.M., Dijkstra, S.: Instructional Design: In-
ternational Perspectives. Theory, Research, and Models, vol. 1. Lawrence Erl-
baum Associates, Mahwah (1997)

[179] Tergan, S.O.: Hypertext und Hypermedia: Konzeption, Lernmöglichkeiten,
Lernprobleme und Perspektiven. In: Klimsa, P., Issing, L.J. (eds.) Informa-
tion und Lernen mit Multimedia und Internet – Lehrbuch für Studium und
Praxis, pp. 99–112. MIT Press, Cambridge (2002)

[180] IEEE Learning Technology Standards Committee. 1484.12.1-2002 IEEE stan-
dard for Learning Object Metadata (2002)

[181] MERLOT: MERLOT – multimedia educational resource for learning and on-
line teaching (2006), http://www.merlot.org/merlot/index.htm. This is an
electronic document. Date retrieved: May 15, 2007

[182] Thomas, R.: Millenium mathematics project - bringing mathematics to life.
MSOR Connections 4(3) (2004)

[183] Ullrich, C.: Course generation based on HTN planning. In: Jedlitschka, A.,
Brandherm, B. (eds.) Proceedings of 13th Annual Workshop of the SIG
Adaptivity and User Modeling in Interactive Systems, pp. 74–79 (2005a),
http://www.carstenullrich.net/pubs/Ullrich-CourseGenerationHTN-

ABIS-2005.pdf

[184] Ullrich, C.: Description of an instructional ontology and its applica-
tion in web services for education. In: Poster Proceedings of the 3rd
International Semantic Web Conference, ISWC2004, Hiroshima, Japan,
November 2004, pp. 93–94 (2004a), http://www.carstenullrich.net/pubs/
Ullrich-InstructionalOntology-ISWC-2004.pdf

[185] Ullrich, C.: Description of an instructional ontology and its application in
web services for education. In: Proceedings of Workshop on Applications
of Semantic Web Technologies for E-learning, SW-EL’04, Hiroshima, Japan,
November 2004, pp. 17–23 (2004b), http://www.carstenullrich.net/pubs/
Ullrich-InstructionalOntology-SWEL-2004.pdf

[186] Ullrich, C.: The learning-resource-type is dead, long live the learning-
resource-type! Learning Objects and Learning Designs 1(1), 7–15 (2005b),
http://www.carstenullrich.net/pubs/Ullrich-LearningResource-LOLD-

2005.pdf

[187] Ullrich, C.: Tutorial planning: Adapting course generation to today’s needs.
In: Looi, C.-K., McCalla, G., Bredeweg, B., Breuker, J. (eds.) Proceed-
ings of 12th International Conference on Artificial Intelligence in Education,
p. 978. IOS Press, Amsterdam (2005c), http://www.carstenullrich.net/

pubs/Ullrich-TutorialPlanning-AIED-2005.pdf

http://www.merlot.org/merlot/index.htm
http://www.carstenullrich.net/pubs/Ullrich-CourseGenerationHTN-ABIS-2005.pdf
http://www.carstenullrich.net/pubs/Ullrich-CourseGenerationHTN-ABIS-2005.pdf
http://www.carstenullrich.net/pubs/Ullrich-InstructionalOntology-ISWC-2004.pdf
http://www.carstenullrich.net/pubs/Ullrich-InstructionalOntology-ISWC-2004.pdf
http://www.carstenullrich.net/pubs/Ullrich-InstructionalOntology-SWEL-2004.pdf
http://www.carstenullrich.net/pubs/Ullrich-InstructionalOntology-SWEL-2004.pdf
http://www.carstenullrich.net/pubs/Ullrich-LearningResource-LOLD-2005.pdf
http://www.carstenullrich.net/pubs/Ullrich-LearningResource-LOLD-2005.pdf
http://www.carstenullrich.net/pubs/Ullrich-TutorialPlanning-AIED-2005.pdf
http://www.carstenullrich.net/pubs/Ullrich-TutorialPlanning-AIED-2005.pdf

References 253

[188] Ullrich, C.: Pedagogical rules in ActiveMath and their pedagogical foun-
dations. Seki Report SR-03-03, Universität des Saarlandes, FB Infor-
matik (2003), http://www.carstenullrich.net/pubs/Ullrich-PedRules-

Techrep03.pdf

[189] Ullrich, C., Ilghami, O.: Challenges and solutions for hierarchical task
network planning in e-learning. In: Penserini, L., Peppas, P., Perini, A. (eds.)
STAIRS 2006, Proceedings of the Third Starting AI Researchers’ Sympo-
sium, Riva del Garda, Italy, Aug 2006. Frontiers in Artificial Intelligence
and Applications, vol. 142, pp. 271–272. IOS Press, Amsterdam (2006),
http://www.carstenullrich.net/pubs/UllrichOkhtay-HTNEL-Stairs-

2006.pdf

[190] Ullrich, C., Libbrecht, P., Winterstein, S., Mühlenbrock, M.: A flexi-
ble and efficient presentation-architecture for adaptive hypermedia: De-
scription and technical evaluation. In: Kinshuk, Looi, C., Sutinen, E.,
Sampson, D., Aedo, I., Uden, L., Kähkönen, E. (eds.) Proceedings of
the 4th IEEE International Conference on Advanced Learning Technolo-
gies (ICALT 2004), Joensuu, Finland, pp. 21–25 (2004), http://www.

carstenullrich.net/pubs/Ullrichetal-Presentation-ICALT04.pdf

[191] University of London. Self e-learning networks (2005), http://www.dcs.

bbk.ac.uk/selene/. This is an electronic document. Date retrieved: January
20, 2007.Date last modified: January 21, 2005

[192] van der Linden, E.: Does feedback enhance computer-assisted language learn-
ing? Computers & Education 21(1-2), 61–65 (1993)

[193] van Harmelen, F., McGuinness, D.L.: OWL web ontology language
overview. W3C recommendation, W3C (Feb. 2004), http://www.w3.org/

TR/2004/REC-owl-features-20040210/

[194] van Joolingen, W.R.: Cognitive tools for discovery learning. International
Journal of Artificial Intelligence in Education, 385–397 (1999)

[195] Van Marcke, K.: Instructional expertise. In: Frasson, C., McCalla, G.I., Gau-
thier, G. (eds.) ITS 1992. LNCS, vol. 608, pp. 234–243. Springer, Heidelberg
(1992)

[196] Van Marcke, K.: A generic tutoring environment. In: Aiello, L. (ed.) Proceed-
ings of the 9th European Conference on Artificial Intelligence, Stockholm,
Sweden, pp. 655–660. Pitman, London (1990)

[197] Van Marcke, K.: GTE: An epistemological approach to instructional mod-
elling. Instructional Science 26, 147–191 (1998)

[198] Vassileva, J.: Dynamic Courseware Generation: at the Cross Point of CAL,
ITS and Authoring. In: Proceedings International Conference on Computers
in Education, ICCE’95, Singapore, pp. 290–297 (1995)

[199] Vassileva, J.: Dynamic courseware generation. Communication and Informa-
tion Technologies 5(2), 87–102 (1997)

[200] Vassileva, J., Deters, R.: Dynamic courseware generation on the WWW.
British Journal of Educational Technology 29(1), 5–14 (1998)

[201] Vygotsky, L.S.: Mind in society. Harvard University Press, Cambridge (1978)
[202] W3C. World wide web consortium (2007), http://www.w3.org/. This is an

electronic document. Date retrieved: February 6, 2007. Date last modified:
February 2, 2007

http://www.carstenullrich.net/pubs/Ullrich-PedRules-Techrep03.pdf
http://www.carstenullrich.net/pubs/Ullrich-PedRules-Techrep03.pdf
http://www.carstenullrich.net/pubs/UllrichOkhtay-HTNEL-Stairs-2006.pdf
http://www.carstenullrich.net/pubs/UllrichOkhtay-HTNEL-Stairs-2006.pdf
http://www.carstenullrich.net/pubs/Ullrichetal-Presentation-ICALT04.pdf
http://www.carstenullrich.net/pubs/Ullrichetal-Presentation-ICALT04.pdf
http://www.dcs.bbk.ac.uk/selene/
http://www.dcs.bbk.ac.uk/selene/
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/

254 References

[203] Walmsley, P., Fallside, D.C.: XML schema part 0: Primer second edi-
tion. W3C recommendation, W3C (Oct. 2004), http://www.w3.org/TR/2004/
REC-xmlschema-0-20041028/

[204] Walsh, N., Muellner, L.: DocBook: The Definitive Guide. O’Reilly, Sebastopol
(1999)

[205] Wasson, B.: Determining the Focus of Instruction: Content planning for intel-
ligent tutoring systems. PhD thesis, Department of Computational Science,
University of Saskatchewan, Research Report 90-5 (1990)

[206] Watson, J.B.: Psychology as the behaviorist views it. Psychological Review 20,
158–177 (1913)

[207] Weber, G., Brusilovsky, P.: ELM-ART: An adaptive versatile system for web-
based instruction. International Journal of Artificial Intelligence in Educa-
tion 12(4), 351–384 (2001)

[208] Wiederhold, G.: Mediators in the architeture of future information systems.
The IEEE Computer Magazine (1992)

[209] Wiley, D.A.: Connecting learning objects to instructional design theory: A def-
inition, a metaphor, and a taxonomy. In: Wiley, D.A. (ed.) The Instructional
Use of Learning Objects: Online Version (2000)

[210] Wilkins, D.E.: Can AI planners solve practical problems? Computational In-
telligence 6(4), 232–246 (1990)

[211] Wilson, B., Cole, P.: A review of cognitive teaching models. Educational Tech-
nology Research and Development 39(4), 47–64 (1991)

[212] Winer, D.: XML-RPC specification (October 1999), http://www.xmlrpc.org/
spec

[213] Woolf, B.P., McDonald, D.D.: Building a computer tutor: Design issues. IEEE
Computer 17(9), 61–73 (1984)

[214] Yaman, F., Cao, Y., Nau, D.S., Goldmann, R.P.: Documentation for SHOP2.
Department of Computer Science, University of Maryland (May 2005)

[215] Zech, F.: Grundkurs Mathematikdidaktik. Beltz Verlag, Weinheim (2002)

http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://www.xmlrpc.org/spec
http://www.xmlrpc.org/spec

Index

!!changeScenario, 91
!!removeFromWorldState, 72
!!setAchieved, 92
!dynamicTask, 80
!endSection, 76, 107
!insertLearningService, 78
!insertResource, 72
!startSection, 76, 107
!text, 79, 103

ACE, 224
action, 27
ActiveMath, 22
adaptive hypermedia system, 24
addInWorldStateAsInserted, 75
Advanced Distributed Learning

Initiative (adl), 18
AI-planning, 27
allInserted, 75
allKnownOrInserted, 86
APeLS, 226
Ariadne Foundation, 18
assignIterator, 71
assignment, 32
auxiliary, 51
axiom, 33

behaviorism, 37

call expression, 32
call term, 31
CMapConnect, 148
CMapConnectExercise, 148
cognitivism, 38

collectUnknownPrereq, 132
concat, 70
concept, 25
concept mapping tool, 177
concept selection, see content planning
conclusion, 52
conjunction, 32
connect, 146
constructivism, 38
content planning, 25
content selection, see presentation

planning
counterExample, 52
course generation, 23

web-service, 189
course planning, 26
course sequencing, 24
curriculum sequencing, see course

generation

DCG, 223
definition, 51
delivery planning, see presentation

planning
demonstration, 52
descriptionScenarioSection, 103, 104
discover, 128
disjunction, 32
domain model, 25
dtd, 15
dynamic-item, 80, 93, 176

effect, 27
evaluation

256 Index

formative, 201
summative, 201

evidence, 52
example, 52
exercise, 52
explain!, 134
explanation, 52
exploration, 52
external function, 31

fact, 51
first, 69
first satisfier precondition, 33
fundamental, 50

generateCourse, 89
GetMetadata, 81
getNonInserted, 76
getNonTargetFundamentals, 92
GetRelated, 81
GetResources, 80
grouping, 172
GTE, 222
guidedTour, 163

hierarchical task network planning
(HTN), 28

iClass, 226
ieee Learning Technology Standards

Committee (ieee ltsc), 18
illustrate!, 126
illustrateCompetency!, 127
illustrateWithSingleExample!, 122,

124
illustrateWithSingleExampleRelaxed!,

124
illustration, 52
implication, 32
ims content packaging (ims cp), 20
ims Global Learning Consortium

(ims/glc), 18
ims learning design (ims ld), 21
ims simple sequencing (ims ss), 21
insertAllAuxOnceIfReady, 88
insertAllResources, 75
insertAndPlanGoal, 89
insertAuxOnceIfReady!, 88
insertIntroductionExample!, 131

insertResource, 73
insertResourceOnce

, 73
insertTargetFundamentals, 88
insertWithVariantsIfReady!, 82
instructional design, 39
instructionalObject, 49
intelligent content assembly, see course

generation
interactivity, 52
internal operator, 34
interoperability, 17
termintroduceWithPrereqSection!, 129
introduceWithSection!, 129
introduction, 52
invitation, 52
iri, 15
isFor, 51
isVariantOf, 49

jshop2, 29

known, 86

law, 51
lawOfNature, 51
learner model, 25

open, 140
learnerProperty, 83
learning theory

descriptive, 37
learning theory, 37

prescriptive, 37
length, 70
list term, 31
logical atom, 31
logical expression, 32
logical precondition, 33
lom, 19

mediator, 55
metadata, 19
method

fallback, 68
HTN, 34
instructional, 26
pedagogical, 62

motivate!, 131

negation, 32

Index 257

OMDoc, 22, 93
omgroup, 93, 174
ontology of instructional objects (oio),

49
OpenMath, 22
operator, 27

HTN, 34
owl, 16

pddl, 27
pedagogical objective, 61
pedagogical scenario, 62
personalized content delivery, see course

generation
plan, 27

HTN, 35
planner, 27
planning algorithm, 28
planning domain, 29, 35
planning problem, 27

HTN, 29, 35
policy, 51
precondition, 27
presentation planning, 26
problem!, 130
procedure, 51
process, 51
proof, 52
prove!, 135

rdf, 15
rdf schema, 16
readyAux, 86
realWorldProblem, 52
reference model, 24
reflect, 140
rehearse, 142
rehearseSingleFundamental, 142
remark, 52
removeElement, 71
removeKnownFundamentals, 88
rest, 69
restrict, 70
reuse, 17
reverse, 70

same, 69
SeLeNe, 227

semantic web, 14
layer cake, 14

shop, 29
shop2, 29
showConnections!, 138
showConnectionsTheorem, 139
showConnectionsTheoremWithProof,

139
slm, 85
Sort, 82
sortByAlreadySeen, 88
standard, 18
state-space search, 28

backward, 28
forward, 28

strips, 27
symbol, 30

task
critical, 68
HTN, 28
instructional, 26
optional, 68
pedagogical, 61
public, 63

task atom, 33
task list, 33
teaching model, 25
term, 31
text, 103
theorem, 51
trail, 227
trail generation, see course generation
train!, 119
trainWithSingleExercise!, 114, 118
trainWithSingleExerciseRelaxed!,

119

unicode, 15
uri, 15
user model, 25

WINDS, 224
World Wide Web Consortium (W3C),

14

xml Schema, 15
xml, 15

	Dedication
	Foreword
	Preface
	Contents
	Part I Preliminaries
	Introduction
	Motivation
	Contributions
	Service-Oriented Course Generation
	Modeling of Pedagogical Knowledge
	Adaptivity in Generated Courses
	Evaluation

	Overview

	Relevant Technologies
	Basic Terminology
	Semantic Web Technologies
	Extensible Markup Language
	Resource Description Framework
	OWL Web Ontology Language

	E-learning Standards
	Learning Object Metadata
	IMS Content Packaging
	IMS Simple Sequencing
	IMS Learning Design

	Mathematics in the Web
	OMDoc (Open Mathematical Documents)
	The Learning Environment ActiveMath

	Course Generation
	Hierarchical Task Network Planning
	Introduction to AI-Planning
	Introduction to Hierarchical Task Network Planning
	SHOP2 and JSHOP2
	JSHOP2 Formalism

	Descriptive and Prescriptive Learning Theories
	Behaviorism
	Cognitivism
	Constructivism
	Instructional Design
	Competency-Based Learning
	Mathematical Competencies
	Competency Levels

	Part II PAIGOS
	General Principles
	An Ontology of Instructional Objects
	Motivation
	Description of the Ontology
	Why an Ontology?
	Applications of the Ontology

	A Mediator for Accessing Learning Object Repositories
	Related Work
	Overview of the Mediator Architecture
	Querying the Mediator
	Ontology Mapping and Query Rewriting
	Repository Interface and Caching
	Limitations of the Mediator as an Educational Service

	Pedagogical Tasks, Methods and Strategies
	Representing Course Generation Knowledge in an HTN Planner
	Motivation
	Mapping Pedagogical Tasks onto HTN Tasks
	Course Generation Planning Problems
	Critical and Optional Tasks

	Basic General Purpose Axioms and Operators
	Testing for Equality
	List Manipulation
	Binding a Variable to All Terms of a Term List
	Manipulating the World State

	Basic Operators and Methods of the Course Generation Domain
	Inserting References to Educational Resources
	Starting and Ending Sections
	Inserting References to Learning-Support Services
	An Operator for Dynamic Text Generation
	Dynamic Subtask Expansion
	Accessing Information about Educational Resources
	Axioms for Accessing the Learner Model
	Processing Resources Depending on Learner Characteristics
	Initializing and Manipulating Information about the Learning Goal

	Converting a Plan into a Course
	Generating Structure and Adaptivity: Dynamic Tasks
	Generation of Narrative Bridges and Structure
	Empirical Findings
	Operator and Methods for Text Generation
	Symbolic Representations of Dynamic Text Items
	Generation of Structure Information

	Summary

	Course Generation in Practice: Formalized Scenarios
	Moderate Constructivist Competency-Based Scenarios
	Course Generation and Constructivism -- a Contradiction?
	Selecting Exercises
	Selecting Examples
	Scenario ``Discover''
	Scenario ``Rehearse''
	Scenario ``Connect''
	Scenario ``Train Intensively''
	Scenario ``Train Competencies''
	Scenario ``Exam Simulation''

	Course Generation Based on Instructional Design Principles
	Merrill's ``First Principles of Instruction''
	Scenario ``Guided Tour''

	Implementation and Integration
	Implementation
	Integration of PAIGOS in ActiveMath
	Course Generation in ActiveMath
	Dynamically Generated Elements in a Table of Contents
	Usage of Learning-Support Services in ActiveMath
	Template-Based Generation of Narrative Bridges
	PAIGOS as a Service in ActiveMath

	Course Generation as a Web-Service
	Interfaces

	Evaluation
	Technical Evaluations and Use Cases
	Evaluation of the Ontology
	Mediator Use Cases and Evaluations
	Course Generation Use Cases and Evaluations
	Performance of PAIGOS
	Discussion

	Formative and Summative Evaluation
	Formative Evaluations
	Summative Evaluation
	Discussion

	Part III Conclusions
	Related Work
	Early Work
	Generic Tutoring Environment
	Dynamic Courseware Generator
	ACE/WINDS
	Former Course Generator of ActiveMath
	APeLS/iClass
	SeLeNe
	Statistical Methods for Course Generation
	Approaches Using Hierarchical Task Network Planning
	Ontologies for Instructional Design

	Future Work and Acknowledgments
	Future Work

	Complete List of User Comments
	References
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

